

Presented by >

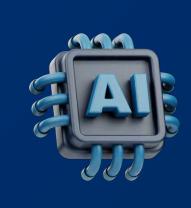
Abdul Rahman Anirudh



### INTRODUCTION

### > What is an LLM

•LLM stands for Large Language Model. • It's a type of AI trained on massive text data. •Designed to understand, generate, and manipulate language.


### > Why is is called large?

It's called "large" because it has:

- Billions of parameters (ChatGPT-3 had 175B, GPT-4 has more).
- Trained on massive datasets from the internet.



### HOW IS IT RELATED TO MLP



#### **SUPERVISED** LEARNING

- **Q** Trained on labeled data • 🗹 Input: Email, Label: Spam/Not Spam • 🚺 Used in: Classification.
  - Regression



#### **UNSUPERVISED** LEARNING

- 🗱 Trained on unlabeled data
- 📌 Model finds patterns on its own
- 📊 Used in: Clustering (e.g., Customer Segmentation)



### SEMI-SUPERVISED LEARNING

- 🚯 Some data labeled,



most not • 📌 Combines the best of both worlds P Used when labeling is expensive



### SELF-SUPERVISED LEARNING

• 🝯 No human-labeled data • 📌 Model creates its own labels from data • 📟 Used in LLMs like ChatGPT

### HOW DOES AN LLM WORK?

### > An LLM is a combination of:

### DATA

### "The fuel of the model"

- Text from books, websites, Wikipedia, forums, and code
- Billions of words (tokens)
- Unlabeled and diverse sources
  - Helps the model learn language patterns, facts, and context

#### TRAINING

#### "The learning process"

- Self-supervised learning: predicts next word in a sentence
- Involves fine-tuning and RLHF (human feedback)
- Converts raw data + architecture into a powerful language model

#### ARCHITECHTURE

#### "The brain of the model"

- Based on Transformer architecture
- Uses self-attention to understand word relationships
  - Handles long-range dependencies in text
  - Millions or billions of parameters

## ARCHITECHTURE OF LLM

### TRANSFORMER ARCHITECTURE

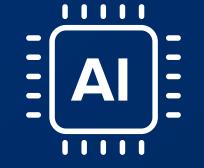
- Foundation of all modern LLMs (like GPT, BERT, LLaMA)
  - Uses multiple layers of attention and feed-forward neural networks
- Processes all words in parallel (faster than old RNNs)

### SELF-ATTENTION MECHANISM

• Helps the model focus on important words in a sentence

- Understands relationships between words — even far apart
- Core reason LLMs can write with context and coherence




### POSITIONAL ENCODING

• Tells the model the order of words, since Transformers don't read sequentially

- Adds position-based numbers to each word's embedding
- Keeps sentence structure and grammar intact

## **APPLICATIONS**

> Some real world applications of llms are:



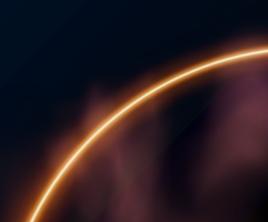
### Chatbots & Virtual Assistants

- Examples: ChatGPT, Google Bard, Bing Al
- Use: Answering questions, customer support, personal productivity
- Why it matters: LLMs make conversations feel natural and human-like

### **Code Generation & Assistance**

- Examples: GitHub Copilot, Amazon CodeWhisperer
- Use: Writing, completing, and explaining code for developers
- Why it matters: Saves time and helps beginners learn to code faster

### **Content Creation & Summarization**


- Examples: Jasper, Notion AI, GrammarlyGO
- Use: Writing blogs, summarizing reports, drafting emails
- Why it matters: Automates writing tasks, boosts productivity, and supports creativity



sonal productivity cural and human-like

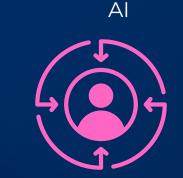
erer for developers s learn to code faster

emails productivity, and





| Halluci<br>nations        | <ul> <li>Generates false or made-up facts with confidence</li> <li>No built-in fact-checking mechanism</li> <li>Problematic in domains like medicine, law, educati</li> </ul> |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Computat<br>ional<br>Cost | <ul> <li>Requires powerful GPUs or TPUs for training</li> <li>Expensive to run and maintain at scale</li> <li>High environmental impact due to energy use</li> </ul>          |




### FUTURE OF

### > How We Do It

### SMALLER & MORE **EFFICIENT MODELS**

- Companies are developing compact LLMs (like Mistral, LLaMA) that run on personal devices
- Goal: reduce cost, improve speed, and make AI more accessible
- May support offline AI or on-device



### PERSONALIZED AI ASSISTANTS

- LLMs will become more personalized based on your preferences, goals, and habits
- May assist in everyday tasks, learning, health, and productivity
  - Think: A smarter, more intuitive digital co-pilot



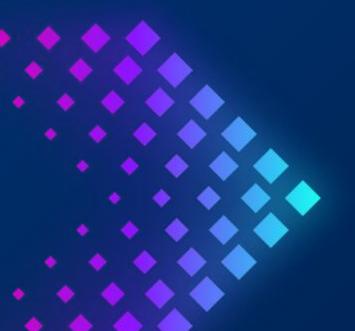
### **BETTER ALIGNMENT & SAFETY**

- Focus on making LLMs safer, more factually accurate, and aligned with human values • Advances in Al alignment, guardrails, and explainability • Important to prevent misuse, bias, or harm



### **DEMOCRATIZATION & OPEN SOURCE** GROWTH

- Open-source models like LLaMA, Falcon, and Mistral are growing
- More people and organizations can build, customize, and use LLMs
  - Encourages innovation, transparency, and fairness






# THANK YOU









