

Generative Adversarial Networks (GANS)

Exploring the Art and Science of AI-generated Content

Introduction

A GAN is a type of machine learning model where two neural networks compete with each other to generate realistic data.

A "Generator" tries to create fake data, and a "Discriminator" tries to tell if it's real or fake. They improve together through competition.

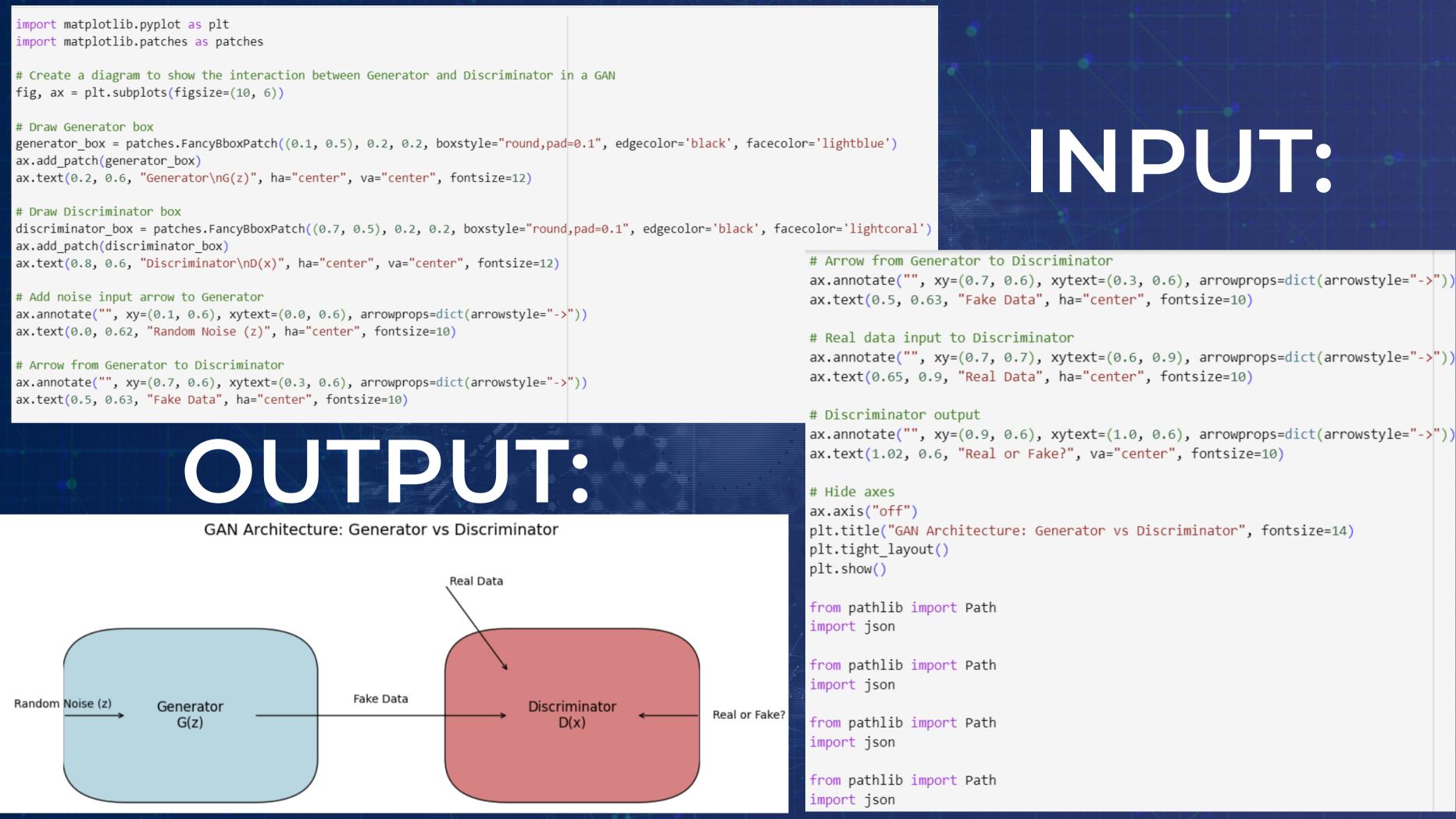
Loyola University Chicago

How GANs Work?

Two models: Generator (G): Learns to create fake data Discriminator (D): Learns to detect fake data

The goal: *G tries to fool D, D tries to catch G Training is a back-and-forth game (minimax optimization)*

Loyola University Chicago


Training Loop

• **Step 1**: *G* creates fake data from random noise

- Step 2: D sees both real and fake data
- **Step 3**: *D tries to classify correctly*
- **Step 4**: *G* updates to better fool *D*
- Repeat for many epochs

·[••] Loyola University Chicago Variants of GANs

The original model

Uses convolutional layers, good for images

B

CYCLEGAN

Translates images (e.g., horse \leftrightarrow zebra)

next slide

 \rightarrow

59/2

CONDITIONAL GAN (CGAN)

Adds labels as input (e.g., generate cats or dogs)

Very high-quality face generation

1.

Applications of GANs

Loyola University Chicago

Image generation: Portraits, fake people Art and design: Al-generated paintings 2. Medical imaging: Generate synthetic data for rare 3. diseases

- **Super-resolution**: Upscaling low-quality images 4.
- **Deepfakes:** Face swapping, voice cloning (ethical 5.

concerns)

Loyola University Chicago

- Training instability: Hard to balance G and D
- **Computational cost**: Needs a lot of GPU power

- **Overfitting Risks:** May memorize training data

next slide

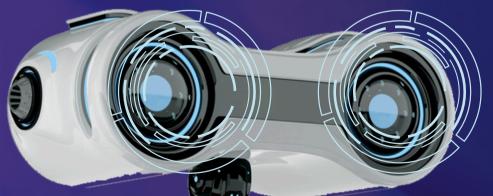
Challenges and Limitations

08

• Mode collapse: Generator produces limited variety • Evaluation metrics: No perfect way to judge quality • Hyperparameter Sensitivity: Small changes, big effects

Ethics & Risks of GANs

- **Deepfakes & Misinformation**: Used to spread fake videos/images
- Copyright & Originality: Legal gray area for AI-generated content
- Bias in Outputs: Reflects biases in training data
- Privacy Concerns: GANs can unintentionally reproduce real faces
- Misuse Potential: Identity fraud, political manipulation, scams


The Future of GANS

- **Controllable Generation**: Generate based on prompts or conditions
- **Better Evaluation Metrics:** More reliable scoring of \bullet

quality

- **Hybrid Models:** *GANs* + *Diffusion or Transformers*
- Smarter Data Augmentation: Improve small dataset performance
- Creative Collaboration: Tools for artists, designers, and musicians

Loyola University Chicago

Let's Talk About It!

"Can GANs replace human creativity?"

"Would you buy art created by AI?"

"What safeguards should be in place for deepfakes?"

Loyola University Chicago

Conclusion

- GANs are a powerful and creative branch of machine learning.
- They use two neural networks (Generator vs. Discriminator) in a game-like setup.
- Capable of generating realistic images, art, and more — but also come with ethical challenges.
- As GANs continue to evolve, so does their impact on industries, society, and the line between real and fake.

