Computer Vision Applications COMP 388-002/488-002 Computer Science Topics

Face Recognition COMP 388-002/488-002 Computer Science Topics

Computer Vision Applications

Daniel Moreira Fall 2022

Practical Activity 1

Work in Pairs

Use Google Colab at https://bit.ly/3FZFk6S

Observe ArcFace's¹ distance Different faces Different poses Different "accessories" (e.g., glasses, mask, etc.)

Contributions or Question?

1. https://arxiv.org/abs/1801.07698

COMP 388 - Face Re File Edit View Insert Rur	ecognition 🛠 🔲 🔲 Comment 🚢 Share 🌣 🧕
≔ Files ⊡ ×	+ Code + Text
Q ₹x ∴ .config ∴ .config ∴ drive Sample_data dlib_face_detector.dat face1.jpg face2.jpg	 Face Recognition Link https://bit.ly/3FZFk6S ↑ ↓ ⇔ ■ ✓ [
	 Needed Libraries ^v₂₈ Pip install arcface dlib gdown
	Looking in indexes: <u>https://pypi.org/simple, https://us-python.pkg</u> Requirement already satisfied: arcface in /usr/local/lib/python3.7 Requirement already satisfied: dlib in /usr/local/lib/python3.7/di Requirement already satisfied: gdown in /usr/local/lib/python3.7/d Requirement already satisfied: numpy in /usr/local/lib/python3.7/d Requirement already satisfied: pyyaml>=5.3 in /usr/local/lib/pythc Requirement already satisfied: opencv-python>=4.4 in /usr/local/lib
<>	Requirement already satisfied: requests>=2.24.0 in /usr/local/lib/ Requirement already satisfied: tensorflow>=2.3.0 in /usr/local/lib Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib
	Requirement already satisfied: charset-normalizer<3,>=2 in /usr/lc Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/pyth Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local
Disk 55.48 GB available	Requirement already satisfied: keras-preprocessing>=1.1.1 in /usr/

How about Attacks?

https://www.wired.com/story/10-year-old-face-idunlocks-mothers-iphone-x/

surveillance cameras

https://www.theguardian.com/world/2019/aug/13/thefashion-line-designed-to-trick-surveillance-cameras

Attacks

COMP 388-002/488-002 Computer Science Topics **Computer Vision Applications**

Daniel Moreira Fall 2022

Computer Vision Attacks

Computer Vision Attacks

Attacks and Defenses

Attacks

Procedures performed by an **attacker** to explore the vulnerability of a computer system to make it behave out of specification.

Defenses

Procedures to avoid, detect, or mitigate attacks.

Within Machine Learning Data driven.

Adversarial Data

Synthetic samples pretending to be real. Manipulated samples pretending to be pristine. Data copies pretending to be original (spoofing).

Two Attack Opportunities

At training time and at inference time.

Within Machine Learning Data driven.

Types of Attack White Box

The attacker knows how the solution works and has access to its trained model.

Black Box

The attacker only sees the input and output of the solution; sometimes, even these are not clear.

Gray Box

The attacker has limited knowledge about the solution.

Within Machine Learning Data driven.

Attack Examples Evasion

The attacker avoids data detection (or causes misclassification) by the system, usually by presenting adversarial data (at inference time).

Example: evasion of text-based spam detection with images.

Within Machine Learning Data driven.

Attack Examples Evasion

The attacker avoids data detection (or causes misclassification) by the system, usually by presenting adversarial data (at inference time).

 $+.007 \times$

"panda" 57.7% confidence

noise

"gibbon" 99.3% confidence

https://arxiv.org/pdf/1412.6572.pdf

=

Within Machine Learning Data driven.

Attack Examples Evasion

The attacker avoids data detection (or causes misclassification) by the system, usually by presenting adversarial data (at inference time).

(a) Image

(b) Prediction

(c) Adversarial Example

(d) Prediction

https://openaccess.thecvf.com/content_ICCV_2017/papers/ Metzen_Universal_Adversarial_Perturbations_ICCV_2017_paper.pdf

Within Machine Learning Data driven.

Attack Examples Evasion

The attacker avoids data detection (or causes misclassification) by the system, usually by presenting adversarial data (at inference time).

Daily Mail

Tesla cars tricked into autonomously accelerating up to 85 MPH in a 35 MPH zone while in cruise control using just a two-inch strip of electrical tape

https://www.youtube.com/watch?v=4uGV_fRj0UA

Within Machine Learning Data driven.

Attack Examples Evasion

The attacker avoids data detection (or causes misclassification) by the system, usually by presenting adversarial data (at inference time).

Repudiation

https://www.youtube.com/watch?v=_PoudPCevN0

Within Machine Learning Data driven.

Attack Examples Evasion

The attacker avoids data detection (or causes misclassification) by the system, usually by presenting adversarial data (at inference time).

Spoofing

Within Machine Learning Data driven.

Attack Examples Hill Climbing

The attacker iteratively provides synthetic adversarial samples to the system (at inference time).

At each iteration, the attacker observes how the output scores are progressing (gray-box attack).

Martinez-Diaz et al. *Hill-Climbing and Brute-Force Attacks on Biometric Systems: A Case Study in Match-on-Card Fingerprint Verification* IEEE ICCST, 2006

Within Machine Learning Data driven.

Attack Examples Hill Climbing

With such progress feedback,

the attacker can guide the generation of better and better synthetic data samples, up the point of trespassing the decision threshold.

Martinez-Diaz et al. Hill-Climbing and Brute-Force Attacks on Biometric Systems: A Case Study in Match-on-Card Fingerprint Verification IEEE ICCST, 2006

Within Machine Learning Data driven.

Attack Examples Hill Climbing

With such progress feedback,

the attacker can guide the generation of better and better synthetic data samples, up the point of trespassing the decision threshold.

One can make it fully data-driven with GANs.

Martinez-Diaz et al. Hill-Climbing and Brute-Force Attacks on Biometric Systems: A Case Study in Match-on-Card Fingerprint Verification IEEE ICCST, 2006

Within Machine Learning Data driven.

Attack Examples Master Key

Similar to hill climbing, but the target is to generate an adversarial sample that matches multiple classes.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 9, SEPTEMBER 2017

MasterPrint: Exploring the Vulnerability of Partial **Fingerprint-Based Authentication Systems**

Aditi Roy, Student Member, IEEE, Nasir Memon, Fellow, IEEE, and Arun Ross, Senior Member, IEEE

https://www.cse.msu.edu/~rossarun/ pubsRoyMemonRossMasterPrint_TIFS2017.pdf

2013

Within Machine Learning Data driven.

Attack Examples Denial of Service

The system is either fooled to mostly take its more intense processing path, or flooded with multiple input data to process.

https://www.theguardian.com/world/2019/aug/13/thefashion-line-designed-to-trick-surveillance-cameras

Within Machine Learning Data driven.

Attack Examples Data Poisoning (or Backdoor, or Trojan) Mislabeled adversarial data are covertly included among the training samples.

Gu et al. BadNets: Evaluating Backdooring Attacks on Deep Neural Networks IEEE Access, 2019 https://ieeexplore.ieee.org/document/8685687

Objective

Learn how to add imperceptive noise to input data in a way that changes the model's class prediction, causing misclassification.

"panda" 57.7% confidence

https://arxiv.org/pdf/1412.6572.pdf

Possible Solution Fast Gradient Sign Method (FGSM)

Possible Solution Fast Gradient Sign Method (FGSM)

Typical Training Solution

Minimize the error (actual label, predicted label) according to the training data batch by "walking" on the error surface to the opposite direction of the error gradient.

Possible Solution Fast Gradient Sign Method (FGSM)

Typical Training Solution

Minimize the error (actual label, predicted label) according to the training data batch by "walking" on the error surface to the opposite direction of the error gradient.

 $new_weight = current_weight - learning_rate \times sign(\nabla_{batch\ error})$

Possible Solution Fast Gradient Sign Method (FGSM)

FGSM

Given one sample (that will be the adversarial data), maximize the error by "walking" on the error surface to the direction of the error gradient.

 $new_sample = current_sample + \epsilon \times sign(\nabla_{new sample})$

Possible Solution Fast Gradient Sign Method (FGSM)

Algorithm

1. Forward-propagate sample through the network. 2. Compute the (actual label, predicted label) error. 3. Back-propagate the error gradient to the sample. 4. Tweak the sample features in the direction that maximizes the error by adding "noise".

Possible Solution Fast Gradient Sign Method (FGSM)

Algorithm

1. Forward-propagate sample through the network. 2. Compute the (actual label, predicted label) error. 3. Back-propagate the error gradient to the sample. 4. Tweak the sample features in the direction that maximizes the error by adding "noise".

 $\epsilon \times sign(\nabla_{new_sample})$: noise.

 $sign(\nabla_{new_sample})$: direction that maximizes the error. ϵ : control the perceptive-mislabel trade-off.

Adversarial Attacks on DL

"panda" 57.7% confidence noise

"gibbon" 99.3% confidence

https://arxiv.org/pdf/1412.6572.pdf

Practical Activity 2

Work in Pairs

Use Google Colab at https://bit.ly/3Vi6Elp

Observe the epsilon's perceptive-mislabel trade-off. Try with different images (source: https://bit.ly/30qEMsP).

Contributions or Question?

1. https://arxiv.org/abs/1801.07698

▶ ▲ COMP 388 - FGSM ☆ ■ Comment ♣ Share ☆		
Table of contents	+ Code + Text	
Fast Gradient Sign Method (FGSM) Importing of the necessary libraries. Downloading MobileNetV2 architecture trained on ImageNet	 Fast Gradient Sign Method (FGSM) Link 	
Helper functions to prepare/manipulate the necessary data	https://bit.ly/3Vi6Elp	
Original Image		
Input target image	✓ Importing of the necessary libraries.	
attack Adversarial Image	import tensorflow as tf import matplotlib.pyplot as plt	
Noise computation		
Noise addition (with multiple epsilons, to test)	 Downloading MobileNetV2 architecture trained on ImageNet 	
Original Source		
Adversarial example using FGSM	<pre>(47] pretrained_model = tf.keras.applications.MobileNetV2(include_top=True, weights='imagenet') pretrained_model_trainable = False # model will be used as is</pre>	
 Copyright 2019 The TensorFlow Authors. 	# ImageNet labels	
 Section 	<pre>decode_predictions = tf.keras.applications.mobilenet_v2.decode_predictions</pre>	

Discussion Time

FGSM

What type of attack is FGSM (e.g., evasion, white box)?

It worked on MobileNet; would it work on other architectures?

PyTorch Example

Watch it Later Use Google Colab at https://bit.ly/3V5VW1c

Phillip Lippe's PyTorch example FGSM attack on ResNet-34 Other attack methods are available

1. https://arxiv.org/abs/1801.07698

Discussion Time

FGSM

What type of attack is FGSM (e.g., evasion, white box)?

It worked on MobileNet; would it work on other architectures?

Defenses

Procedures to avoid, detect, or mitigate these attacks?

Deep Fake Detection

Discussion Time

Can a GAN-generated image be detected?

Yes, for now...

The discriminator always wins (the generator).

Open Problems

Cheap fake detection. GAN architecture attribution. GAN in the wild.

