Face verification

Papers:

VGGFace2: A dataset for recognising faces across pose and age
A Discriminative Feature Learning Approach for Deep Face Recognition

FaceNet: A Unified Embedding for Face Recognition and Clustering
SphereFace: Deep Hypersphere Embedding for Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition



General Concept

e Softmax: only learns separable features that are not discriminative enough.
o  Softmax + contrastive loss / center loss

e Triplet Loss: supervise the embedding learning.
o  Center loss: explicitly encourages intra-class compactness.

e Euclidean margin based loss + softmax: joint supervision
o Insome sense Euclidean and softmax re incompatible

e Angular margin:

e CosFace:

e ArcFace:
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Figure 1: Comparison of open-set and closed-set face recognition.



VGGFace2

A dataset for recognising faces across pose and age.



VGGFace2

e Thedataset contains 3.31 million images of 9131 subjects, with an average of 362.6

images for each subject.
o  variationsin pose, age, illumination, ethnicity and profession (e.g. actors, athletes,
politicians).
e Thedataset was collected with three goals in mind:
o large number of identities + large number of images for each identity;

Datasets | # of subjects | # of images | # of images per subject | manual identity labelling [ pose | age | year
LEW [10] 5,749 13,233 1/2.3/530 g z — [ 2007
YTE 23] 1,595 3,425 videos N 5 N — [ 2011
CelebFaces+ [ 2()] 10, 177 202,599 19.9 - - - 2014
CASIA-WebFace [ 7] 10,575 494,414 2/46.8/804 - - - 2014
UB-A [1] 500 5.712 images, 2,085 videos 114 N - [ 2015
IUB-B [1] 1,845 11, 754 images, 7,011 videos 36.2 - - - 2017
VGGFace [ 16] 2,622 26 M 1.000/1, 000/1,000 - - Yes | 2015
MegaFace [!”] 690, 572 4.TM 3712469 - - - 2016
MS-Celeb-1M [ 7] 100, 000 10 M 100 - - - 2016
UMDFaces | 7] 8.501 367,920 43.3 Yes Yes Yes | 2016
UMDFaces-Videos [1] 3.107 22.075 videos - - - - 2017
VGGFace? (this paper) 9.131 3.31 M R0/362.6/843 Yes Yes Yes | 2018




VGGFace2 - Dataset Collection

A. Stages:

1. Obtaining and selecting a name list

o candidates with insufficient images
o  Attribute information such as ethnicity and kinship is obtained from DBPedia

2. Obtaining images for each identity

o  Downloaded 1k images for each subject.

o  Age variation (sideview - 200, very young - 200) = 1400 images

3. Facedetection

o  Face detection extended by factor of 0.3 for a better trade-off between precision and recall.

Stage | Aim Type | # of subject | total # of images | Annotation effort
1 Name list selection M 500K 50.00 million 3 months

2 Image downloading A 9244 12.94 million -

3 Face detection A 9244 7.31 million -

R Automatic filtering by classification A 9244 6.99 million -

5 Near duplicate removal A 9244 5.45 million -

6 Final automatic and manual filtering | A/M 9131 3.31 million 21days




VGGFace2 - Dataset Collection

4. Automatic filtering by classification: to remove outlier faces for each identity
automatically

o Thetop 100 retrieved images of each identity are used as positives,
o andthetop 100 of all other identities are used as negative for training.
o Removingimages under the threshold of 0.5
5.  Near duplicate removal
o  Nearduplicate images
6. Final automatic and manual filtering
o Existenterrors:
i. Outliers
ii. Face mixtures




e Detecting overlapped subjects.
o Subject overlapping:” Will | Am’ & ‘William’
o Noisy classes
o  Subjects with less samples
e Removing outlier images for a subject.
o Resulted in purity of 96%
o retrain the model based on a dataset classified
into three sets
m H(highscorerange[1,0.95]))
m | (intermediate score range (0.95, 0.8])
m L (lowscorerange(0.8,0.5])
e Pose and age annotations
o  Training two networks
m Head pose (roll, pitch, yaw)
m Apparent age.




Training dataset VGGFace MSIM VGGFace2
EX P E R I M E N TS - young | mature young

mature young mature
young 0.5231 | 0.4338 | 0.4983 | 0.4005 | 0.6256 | 0.5524
mature 0.4394 | 0.5518 | 0.4099 | 0.5276 | 0.5607 | 0.6637

Table V: Face probing across ages. Similarity scores are evaluated across age templates. A higher value is better.

e Experimental setup

o ResNet-50 and SE-RestNet-50 are used as the backbone architectures
m  The Squeeze-and-Excitation (SE) blocks [9] adaptively recalibrate channel-wise
feature responses by explicitly modelling channel relationships
o  Networks are learned from scratch - VGGFace, Ms-Celeb-1M, and VGGFace?2
o  pre-trained on Ms-Celeb-1M, and fine-tuned on VGGFace2
e Experiments on the new dataset

e Experiments on [JB-A

Training dataset VGGFace MSIM VGGFace2
front three-quarter | profile front three-quarter | profile front three-quarter | profile
front 0.5781 0.5679 0.4821 | 0.5661 0.5582 0.4715 | 0.6876 0.6821 0.6222
three-quarter 0.5706 0.5957 0.5345 | 0.5628 0.5766 0.5036 | 0.6859 0.6980 0.6481
profile 0.4859 0.5379 0.5682 | 0.4776 0.5064 0.5094 | 0.6264 0.6515 0.6488

Table IV: Face probing across poses. Similarity scores are evaluated across pose templates. A higher value is better.



Squeeze-and-Excitation networks: (SENets)

H




A Discriminative Feature Learning
Approach for Deep Face Recognition

Softljrt;‘cllx loss + center loss: inter-class dispensation and intra-class compactness as much as
possible

The CNNs are trained under the supervision of the softmax loss and center loss, with a hyper
parameter to balance the two supervision signals.
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discriminative of deeply learned Face.Lrwages e D reatures  Predicted Labels
features.

e Trainable and easy to optimize.

e Simultaneously learns the
center and Penalized the
distances

e Efficiently pulls the deep
features of the same class to
their centers.

e Minimize the intra-class
distance of the deep features.

Fig. 1. The typical framework of convolutional neural networks.

e Softmax pool only encourages the separability
of features.

e Contrastive loss and triplet loss: increases the
computational complexity due to growing of
triplets.

e Center loss: Same requirement of Softmax pool,
needs no complex recombination of the training
samples
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Table 1. The CNNs architecture we use in toy example, called LeNets++. Some of
the convolution layers are followed by max pooling. (5,32)/1,2 X 2 denotes 2 cascaded
convolution layers with 32 filters of size 5 x 5, where the stride and padding are 1 and
2 respectively. 2,5 o denotes the max-pooling layers with grid of 2 x 2, where the stride
and padding are 2 and 0 respectively. In LeNets++, we use the Parametric Rectified
Linear Unit (PReLU) [12] as the nonlinear unit.

Stage 1 Stage 2 Stage 3 Stage 4
Layer Conv Pool | Conv Pool | Conv :Pool FC
LeNets (5,20) /1,0 2/2,01(5,50)/1,0 2/2,0 500
LeNets++ | (5,32)/1,2 X 2| 2/2,0 | (5,64)/1,2 X 2| 2/2,0 | (5,128)/1,2 X 2[2/2,0 | 2




Center Loss

e Instead of updating the centers with the respect
to the entire training set, we perform the update
based on the mini-batch.

e Toavoidthe large perturbation caused by few
mislabeled samples, we use a scaler a to control
the learning rate.

e Center loss are trainable and can be optimized by
standard SGD.

A scalar A is used for balancing the two loss function
Joint loss
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Joint Supervision

C: The convolution layer

P: The max-pooling layer

LC: The local convolution layer
FC: The fully connected layer

Softmax
Loss

Center
Loss

Fig. 4. The CNN architecture using for face recognition experiments. Joint supervision
is adopted. The filter sizes in both convolution and local convolution layers are 3x 3 with
stride 1, followed by PReLU [12] nonlinear units. Weights in three local convolution
layers are locally shared in the regions of 4 x 4, 2 x 2 and 1 x 1 respectively. The
number of the feature maps are 128 for the convolution layers and 256 for the local
convolution layers. The max-pooling grid is 2 x 2 and the stride is 2. The output of the
4th pooling layer and the 3th local convolution layer are concatenated as the input of
the 1st fully connected layer. The output dimension of the fully connected layer is 512.
Best viewed in color. (Color figure online)



A influence

Joint Supervision

e Softmax loss: deeply
learned features contain
large intra-class variation

e Center loss: deeply learnec
features and center degrad
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Fig. 3. The distribution of deeply learned features under the joint supervision of soft-
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Fig. 5. Face verification accuracies on LEW dataset, respectively achieve by (a) models dOts (€0, €1,...,¢c0) denote 10 class centers of deep features. Best viewed in color.
(Color figure online)




Joint Supervision Result

Table 2. Verification performance of different methods on LFW and YTF datasets

Method Images | Networks | Acc. on LFW | Acc. on YTF
DeepFace [34] 4M 3 97.35 % 91.4%
DeepID-2+ [32] - 1 98.70 % -

DeepID-2+ [32] : 25 99.47 % 93.2%
FaceNet [27] 200M |1 99.63 % 95.1 %

Deep FR [25] 26M |1 98.95 % 97.3%

Baidu [21] 1.3M |1 99.13% -

model A 0.7M |1 97.37% 91.1%

model B 0.7M |1 99.10 % 93.8 %
model C (Proposed) |0.7M |1 99.28 % 94.9 %



https://www.youtube.com/watch?v=adKtquTjy28

Joint Supervision Result
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(a) 1M and (b) 10K distractors on Set 1. The results of other methods are provided
by MegaFace team.



FaceNet

Directly learns a mapping from face images to a compact Euclidean space where
distances directly correspond to a measure of face similarity.



FaceNet

directly learns a mapping from face images to a compact
Euclidean space (L2) where distances directly correspond
to a measure of face similarity

e Recognition becomes a k-NN classification
e Clustering can be achieved using k-means or
agglomerative clustering.

Trained on a deep convolutional network to directly
optimize the embedding itself, rather than an intermediate
bottleneck layer

e usingtriplets
o roughly aligned matching / non-matching face
patches generated using a novel online triplet
mining method
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Beginning of training...
Triplets e 3
anchor . | - )

. . . positive
e Introduced negative exemplar mining
strategy H K
e compact 128-D embedding using a e
triplet-based loss function ¢
e Thethumbnails are tight crops of the

End of training

face area
o scaleandtranslationis performed. LT g
o no 2D or 3D alignment “nchor . H
e Triplet Loss function + Triplet mining. negative
e Matching (positive - negative): positive. )

o Hard mining triplet selection approach.
o Semi Hard triplet mining.
m Datalabelingissue, eadil
egative

m  Minibatch training Anchor LEARNING
Negative
Anchor

Positive Positive
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Architecture

Euclidean Space
Triplet Loss Function
e Hard mining triplet selection
approach.
Semi Hard triplet mining.
e Datalabelingissue,
e Minibatch training
K-fold training:
€ 200kimages
€ 100k x 100k image pair

using fully end-to-end network.
CNN SGD + AdaGrad

! ©>| DEEP ARCHITECTURE | =4 ®

Batch

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.
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FaceNet
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Figure 4. FLOPS vs. Accuracy trade-off. Shown is the trade-off
between FLOPS and accuracy for a wide range of different model
sizes and architectures. Highlighted are the four models that we
focus on in our experiments.
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Figure 5. Network Architectures. This plot shows the com-
plete ROC for the four different models on our personal pho-
tos test set from section 4.2. The sharp drop at 10E-4 FAR
can be explained by noise in the groundtruth labels. The mod-
els in order of performance are: NN2: 224 %224 input Inception
based model: NN1: Zeiler&Fergus based network with 1x1 con-
volutions: NNS1: small Inception style model with only 220M
FLOPS: NNS2: tiny Inception model with only 20M FLOPS.



Result

Performance:

[
Youtube Faces DB Figure 7. Face Clustering. Shown is an exemplar cluster for one

o classification accuracy of 95.12% user. All these images in the users personal photo collection were
+0.39 clustered together.
o LFW
L False accept
o classification accuracy of 98.87%
+0.15

Figure 6. LFW errors. This shows all pairs of images that were
incorrectly classified on LFW.



SphereFace: Deep Hypersphere
Embedding for Face Recognition

deep face recognition (FR) problem under open-set protocol, where ideal face features are
expected to have smaller maximal intra-class distance than minimal inter-class distance
under a suitably chosen metric space



SphareFace

e angular margin
Transform feature space into
hypersphere and compute the
distances as the angles
between the feature vectors.

e Angular margindirectly links to
discriminative on a manifold.

e Each pixelis normalized by
subtracting 127.5 and then
being divided by 128.

2D Hypersphere
Manifold

3D Hypersphere
Manifold

Modified Softmax Loss

Euclidean Margin Loss

A-Softmax Loss (m=2)

Figure 3: Geometry Interpretation of Euclidean margin loss (e.g. contrastive
loss, triplet loss, center loss, etc.), modified softmax loss and A-Softmax
loss. The first row is 2D feature constraint, and the second row is 3D feature
constraint. The orange region indicates the discriminative constraint for
class 1, while the green region is for class 2.
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Figure 2: Comparison among softmax loss, modified softmax loss and A-Softmax loss. In this toy experiment, we construct a CNN to learn 2-D features on a
subset of the CASIA face dataset. In specific, we set the output dimension of FC1 layer as 2 and visualize the learned features. Yellow dots represent the
first class face features, while purple dots represent the second class face features. One can see that features learned by the original softmax loss can not be
classified simply via angles, while modified softmax loss can. Our A-Softmax loss can further increase the angular margin of learned features.



| Loss Function | Decision Boundary |
A-Softmax Loss Softmax Loss (W1, —Wa)xz+b; —by=0

Modified Softmax Loss ||z ||(cos 81 —cosf2) =0

||z ||(cos m8 —cos 62) =0 for class 1
amdofimaxdoss ||z ||(cos 81 — cos mb2) =0 for class 2

Table 1: Comparison of decision boundaries in binary case. Note that, #; is
the angle between W; and x.
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A-Softmax Loss

max angle (pos. pairs): 1.91
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Figure 5: Visualization of features learned with different m. The first row shows the 3D features projected on the unit sphere. The projected points are the
intersection points of the feature vectors and the unit sphere. The second row shows the angle distribution of both positive pairs and negative pairs (we choose
class 1 and class 2 from the subset to construct positive and negative pairs). Orange area indicates positive pairs while blue indicates negative pairs. All angles
are represented in radian. Note that, this visualization experiment uses a 6-class subset of the CASIA-WebFace dataset.
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Method Models Data LFW | YTF
Result DeepFace [10] 3 AM* | 9735 | 914
FaceNet [22 1 200M* 99.65 | 95.1
100 100 Deep FR [20] 1 2.6M 9895 | 97.3
o 5 DeepID2+ [27] ! 300K* | 98.70 | N/A
Z o - DeepID2+ [27] 25 300K* | 9947 | 932
Baidu [ 15] I 13M* | 99.13 | N/A
< " < v Center Face [4] 1 0.7M* | 9928 | 94.9
2% 2 Yietal. [1/] 1 WebFace | 97.73 | 92.2
% 100 100 10 % 10° 10° Ding et al. [ 2] | WebFace | 98.43 N/A
i i e N A sememn o Liu et al. [16] 1 WebFace | 98.71 | N/A
| : Softmax Loss 1 WebFace | 97.88 | 93.1
— e Softmax+Contrastive [ 6] 1 WebFace | 98.78 | 93.5
%% " am i Triplet Loss [22 1 WebFace | 98.70 | 93.4
208 NTechLAB_ sl L-Softmax Loss [ 6] 1 WebFace | 99.10 | 94.0
+ %0-4 E%%mik Softmax+Center Loss [ ] 1 WebFace | 99.05 | 944
E02 — Random SphereFace 1 WebFace | 9942 | 95.0
0 0
o Falsell(’):silive RL?: v Falselg;silive R'fle Table 4: Accuracy (%) on LFW and YTF dataset. * denotes the outside data
ROC curve on IM scale ROC curve on 10K scale

is private (not publicly available). For fair comparison, all loss functions
(including ours) we implemented use 64-layer CNN architecture in Table 2.



ArcFace: Additive Angular
Margin Loss for Deep Face
Recognition

main challenges in feature learning using Deep Convolutional Neural Networks
(DCNNis) for large scale face recognition is the design of appropriate loss
functions that can enhance the discriminative power



CosFace
fi = Wz = |Wj||||z|| cos 6;, (2)

Large Margin Cosine Loss. eS(cos(0y, i)—m)

lec — N Z _l 0og 8(005(0 i)—m) - E Z SCOS(GJ",’) ’
“4)

NSL LMCL 2
in<0 a in>0
Figure 3. A geometrical interpretation of LMCL from feature per- Sl L
spective. Different color areas represent feature space from dis- Softmax NSL A-Softmax LMCL
tinct classes. LMCL has a relatively compact feature region com- . 2 il A A
pared with NSL. Figure 2. The comparison of decision margins for different loss

functions the binary-classes scenarios. Dashed line represents de-
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ArcFace Loss

e enhance intra-class compactness and inter-class discrepancy, we consider four kinds of

Geodesic Distance (GDis) constraint.
o  Margin-Loss,
o Intra-Loss,
o Inter-Loss,
o  Triplet-Loss
e Easytoimplement
e Softmax Loss: the size of linear transformation increases linearly.
e Triplet Loss: For large datasets, leads to a significant increase in the number of

iteration.



ArcFace Loss

Toy examples under the softmax and ArcFace loss
on

8 identities with 2D features. Dots indicate
samples and lines refer to the centre direction of
each identity. Based on the feature
normalisation, all face features are pushed to the
arc space with

a fixed radius. The geodesic distance gap between
closest classes

becomes evident as the additive angular margin
penalty is incorporated
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Figure 5. Decision margins of different loss functions under bi-
nary classification case. The dashed line represents the decision
boundary, and the grey areas are the decision margins.
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Figure 2. Training a DCNN for face recognition supervised by the ArcFace loss. Based on the feature z; and weight W normalisation, we
get the cos 6; (logit) for each class as W] z;. We calculate the arccostl,, and get the angle between the feature z; and the ground truth
weight W,,,. In fact, W; provides a kind of centre for each class. Then, we add an angular margin penalty m on the target (ground truth)
angle 6,,. After that, we calculate cos(#,, + m) and multiply all logits by the feature scale s. The logits then go through the softmax
function and contribute to the cross entropy loss.

Algorithm 1 The Pseudo-code of ArcFace on MxNet
Input: Feature Scale s, Margin Parameter m in Eq. 3, Class Number n, Ground-Truth ID ¢t.
x = mx.symbol.L2ZNormalization (x, mode = "instance’)
W = mx.symbol.L2Normalization (W, mode = instance’)
fc7 = mx.sym.FullyConnected (data = x, weight = W, no_bias = True, num_hidden = n)
original_target_logit = mx.sym.pick (fc7, gt, axis = 1)
theta = mx.sym.arccos (original target_logit)
marginal _target_logit = mx.sym.cos (theta + m)
one_hot = mx.sym.one_hot (gt, depth = n, on_value = 1.0, off_value = 0.0)
fc7 = fc7 + mx.sym.broadcast_mul (one_hot, mx.sym.expand_dims (marginal_target_logit - original_target_logit, 1))
9. fIcT=1cT *s5
Output: Class-wise affinity score fc7.
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Numerical Similarity. In Sphere Face Art Face,
and CosFace, three different kinds of margin

penalty are proposed, e.g. multiplicative angular margin
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Figure 4. Target logit analysis. (a) #; distributions from start to
end during ArcFace training. (2) Target logit curves for softmax,
SphereFace, ArcFace, CosFace and combined margin penalty
(cos(mi16 +ma) — ms3).

(a) Softmax (b) ArcFace

Figure 3. Toy examples under the softmax and ArcFace loss on
8 identities with 2D features. Dots indicate samples and lines re-
fer to the centre direction of each identity. Based on the feature
nommalisation, all face features are pushed to the arc space with
a fixed radius. The geodesic distance gap between closest classes
becomes evident as the additive angular margin penalty is incor-
porated.



Method #Image | LFW | YTF

DeeplD [30] 0.2M 99.47 | 93.20

Deep Face [ 1] 44M | 97.35 | 914

4 * VGG Face [22 2.6M 98.95 | 97.30

LN~ FaceNet [27] 200M | 99.63 | 95.10
0.29 0.26 Baidu [ l f‘] 1.3M 99.13 -

Center Loss [ 0] 0.7M 99.28 | 94.9

0.16 "0.2% Range Loss [41] SM 99.52 | 93.70

o Marginal Loss [0] 3.8M 99.48 | 95.98

, ' SphereFace [ | 5] 0.5M 99.42 | 95.0
070 I8 : ! _ _ 31 0.35 SphereFace+ [14] 0.5M 99.47 -

CosFace [15] SM 99.73 | 97.6

0.75 0. .00 o ; ; .28 0.37 MSIMV2, R100, ArcFace 5.8M 99.83 | 98.02

0.20 0. : | ; ; 79 0.68 Table 4. Verification performance (%) of different methods on
LFW and YTE -
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Result

Methods Id (%) | Ver (%)

e Softmax [1 ] 54.85 | 6592

0.06 0.16 0.34 040 000 O. Contrastive Loss[ 15, 0] 65.21 78.86

Triplet [15, 27] 64.79 78.32

R Center Loss[36] 6549 | 80.14

0.13 006 007 ] 00 0771 005 001 028 o. SphereFace [15] 72.729 | 85.561

0.06 0.16 0.13 0.77v@ 0.06 0.06 - g COSFaCC [:\] 77.11 89.88

_ AM-Softmax [13] 72.47 84.44

. 0.34 0.54 0.03 o.oe’?mlo.sa 0.10 o. SphereFace+[l~'] 73.03 N

041 028 055 033 033 “- 20 o014 o I 0o oo: B : CASIA, R50, ArcFace 77.50 92.34

... ... .. —m CASIA, R50, ArcFace, R 91.75 93.69

| . X 0.00 0.00 0.28 0.26 0.10 0.0Z’E X FaceNet [j ] 70'49 86.47

0.57 0.27 0.45 042 045 ogg) o, .00 0.08 0.00 0.30 0.35 0.00 0.00 |0.66 OO CosFace [ 5] 82.72 96.65

. .o . MSIMV2, R100, ArcFace 81.03 96.98

MS1IMV2, R100, CosFace 80.56 96.56

0.49 026 033 0.31 0.20 MSIMV2, R100, ArcFace, R | 98.35 98.48

g MSIMV2, R100, CosFace, R | 97.91 9791
1.00| 0.55 O. .70 0.59

: Table 6. Face identification and verification evaluation of different
0.55 - flay 048 methods on MegaFace Challengel using FaceScrub as the probe
set. “Id” refers to the rank-1 face identification accuracy with 1M
| distractors, and “Ver” refers to the face verification TAR at 10 °
0.70 0.72 0.31 [1:00 ‘ 0.55 FAR. “R” refers to data refinement on both probe set and 1M dis-

— tractors. ArcFace obtains state-of-the-art performance under both
small and large protocols.

0.51 0.20 s 0.26
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Open Questions:

e How often are researchers expanding datasets to enhance training capabilities?

e Are licenses being followed when downloading the images? Do those in the
image have the right to remove themselves from the dataset?

e what some other public places are you can get faces. Like would facebook be, ok?
They most certainly have a lot of head shots of people.

e When downloading, does it take also the name for future references?

e ArcFace, and SphareFace, as the new images are evaluated without the labels, so,
how is that the algorithm calculates the angle to the closest mapped image vector.



Resources:

=

VGGFace2: A dataset for recognising faces across pose and age

A Discriminative Feature Learning Approach for Deep Face
Recognition

FaceNet: A Unified Embedding for Face Recognition and Clustering
SphereFace: Deep Hypersphere Embedding for Face Recognition
ArcFace: Additive Angular Margin Loss for Deep Face Recognition
CosFace: Large Margin Cosine Loss for Deep Face Recognition
Squeeze-and-Excitation Networks
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