Image Segmentation

Matt Hyatt Mujtaba Nazari

Image Segmentation

For each pixel,

- What class does that pixel belong to?
- Which instance of that class?

(a) Image

(b) Semantic Segmentation

(d) Panoptic Segmentation

Important Prerequisites

Momentum update

Training details

Weight decay

- Also called L2 regularization
 - $L_{new}(w) = L_{original}(w) + \lambda w Tw.$
- Penalizes large weights
- Encourages building models with less complexity

Momentum

- extension to gradient descent optimization
- build inertia in a direction in the search space
- overcome oscillations of noisy gradients and coast across flat spots

machinelearningmastery.com

FCN

CVPR 2015

FCN

Contributions:

- End-to-end (no pre/postprocessing)
- Fully convolutional (no MLP)
 - channelwise class activation map ...
- Deconvolution for upsampling

- inference less than ¹/₅ second
- "We find that __ is unnecessary"
 - Many experimental changes make no difference

FCN convolutionization

FCN deconv

Called transposed convolution now

• tf.keras.layers.Conv2DTranspose()

FCN Architecture

FCN results

- SOTA on performance metrics
 - (20% relative improvement)
- Pascal VOC
 - 62.2 mloU

UNet

MICCAI 2015

UNet

- Present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently.
- We show that such a network can be trained end-to-end from very few images and outperforms the prior best method
- The network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU.
- their success was limited due to the size of the available training sets and the size of the considered networks.

Unet Architecture

- The authors have used the unpadded convolution, So, the output is smaller than the input.
- Unet can be divided two encoder and decoder section.
- During upsampling the corresponding feature map from the encoder is concatenated and cropped to fit previous upsampled features

UNet Padding

• mirror the feature map when upsampling edges

SegNet

TPAMI 2017

Convolutional Encoder-Decoder

SegNet

Contributions:

- New upsampling technique
 - decreases the need for learning
 - improves boundary delineation
- Study FCN decoder design

Design Principles:

VGG

- Smooth segmentation of large objects
- Attend to small objects
- End to end architecture

SegNet Unpooling

"bed of nails" unpooling

- preserves spacial info
- does not have to be learned
- Copy the indices instead of the unit.
 - Better GPU usage
- Uses convolution instead of deconvolution (layer, weight, biases, learning weight)

The other values are 0

Max Unpooling

Use positions from pooling layer

1 2

3 4

Input: 2 x 2

Output: 4 x 4

SegNet Results

- improvements on global and class average accuracy
- more impressively, segnet is able to draw clean boundaries
- https://www.youtube. FCN com/watch?v=CxanE **W46ts**

Test samples Ground Truth **not available

DeconvNet

FCN (learn deconv)

SegNet

TABLE 2

Quantitative Comparisons of SegNet with Traditional Methods on the CamVid 11 Road Class Segmentation Problem [22]

Method	Building	Tree	Sky	Car	Sign-Symbol	Road	Pedestrian	Fence	Column-Pole	Side-walk	Bicydist	Class avg.	Global avg.	mloU	BF
SfM+Appearance [28]	46.2	61.9	89.7	68.6	42.9	89.5	53.6	46.6	0.7	60.5	22.5	53.0	69.1	n/a*	
Boosting [29]	61.9	67.3	91.1	71.1	58.5	92.9	49.5	37.6	25.8	77.8	24.7	59.8	76.4	n/a*	
Dense Depth Maps [32]	85.3	57.3	95.4	69.2	46.5	98.5	23.8	44.3	22.0	38.1	28.7	55.4	82.1	n/a°	
Structured Random Forests [31]	n/a											51.4	72.5	n/a*	
Neural Decision Forests [64]	n/a											56.1	82.1	n/a*	
Local Label Descriptors [65]	80.7	61.5	88.8	16.4	n/a	98.0	1.09	0.05	4.13	12.4	0.07	36.3	73.6	n/a*	
Super Parsing [33]	87.0	67.1	96.9	62.7	30.1	95.9	14.7	17.9	1.7	70.0	19.4	51.2	83.3	n/a*	
SegNet (3.5K dataset training - 140K)	89.6	83.4	96.1	87.7	52.7	96.4	62.2	53.45	32.1	93.3	36.5	71.20	90.40	60.10	46.84
				CRF	based	approa	ches								
Boosting + pairwise CRF [29]	70.7	70.8	94.7	74.4	55.9	94.1	45.7	37.2	13.0	79.3	23.1	59.9	79.8	n/a*	
Boosting+Higher order [29]	84.5	72.6	97.5	72.7	34.1	95.3	34.2	45.7	8.1	77.6	28.5	59.2	83.8	n/a*	
Boosting+Detectors+CRF [30]	81.5	76.6	96.2	78.7	40.2	93.9	43.0	47.6	14.3	81.5	33.9	62.5	83.8	n/a*	

SegNet outperforms all the other methods, including those using depth, video and/or CRF's on the majority of classes. In comparison with the CRF based methods SegNet predictions are more accurate in 8 out of the 11 classes. It also shows a good \approx 10 percent improvement in class average accuracy when trained on a large dataset of 3.5 K images. Particularly noteworthy are the significant improvements in accuracy for the smaller/thinner classes. * Note that we could not access predictions for older methods for computing the mIoU, BF metrics.

Mask R-CNN

ICCV 2017

MRCNN

- Uses a region proposal network (RPN)
- ROI Align instead of ROI Pool
 - see Faster RCNN
- Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps.
 - Adding a branch for predicting segmentation masks on each Region of Interest (Rol).
- Parallel head (cls, bbox, mask)

- Provide two output for each object
 - Class label
 - Bounding-box offset
- Decouple mask and class prediction

MRCNN ROIAlign

- For each region of interest (Rol)
 - How can we sample m**2 pixels?
 - Mask head will produce K m**2 feature maps
- quantization-free layer
 - preserves spatial location
 - allows us to build a per-pixel mask from the feature mask
 - pixels are sampled via bilinear interpolation

MRCNN Architecture

- Fast R-CNN
 - Region Proposal
 Network
- R-CNN
 - Object Detection

MRCNN Head

- $K \cdot (m \times m)$ sigmoid outputs
 - pixel-wise binary classification
 - one mask for each class
- L_{mask} : mean binary loss-entropy
- Rol is positive if **IoU> 0.5** with ground-truth box else negative

 $L = L_{cls} + L_{box} + L_{mask}$

RoI = classification loss + bounding-box loss + mask loss

MRCNN Results

Live Result

FCIS

Mask R-CNN

SETR

CVPR 2021

SETR

Contributions:

- "treat semantic segmentation as sequence-to-sequence prediction task"
- Purely transformer architecture
- No resolution downsampling

SETR embedding

img patches

Patch embedding

Positional embedding

- $f: p \in R^{H^*W^*3} \rightarrow e \in R^C$
- E = {e1 + <u>p1</u>, e2 + <u>p2</u>, ..., eL + <u>pL</u>}

SETR multi-headed self attention MHA

SETR receptive field

L3

L4

L1

SETR decoder

SETR Results

• SOTA mIoU on ADE20K (50.28%)

(qualitative results on cityscapes)

Live Result Example

DETR for segmentation [huggingface]

Q&A from Summary

What makes a model fully convolutional?

• It consists of only **conv** layers ... no **FC** layers

How can we deal with irregularly shaped images?

• Use a torch.Transform() to reshape or pad the image size before training

Can UNet be used outside of medical applications?

What if we increase the number of layers and implement the U-net or FCN on aspects of DNA-Mutation; and graph analysis?