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What is Object Detection

e Process of locating objects in images or
videos

e Basis for different CV tasks such as
instance segmentation, image captioning,
object tracking and more.

e Some uses consist of Surveillance systems,
diagnosing diseases from MRI/CT scans,
and Autonomous Vehicles.




Selective Searching

- Uses a diverse set of complementary and hierarchical grouping strategies
- Uses image structure to guide sampling process

- Aims to capture all possible object location

- Fast to compute

- Able to work at all scales

Basis behind Histogram of Oriented Gradients (HOG) and Bag-of-words
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Universal Bounding Box Regression (UBBR)

Takes an image with roughly localized bounding ki
boxes and refine them so that they tightly
enclose nearby objects.

The network takes bounding boxes randomly wnage & input bowes

generated around ground-truth boxes, and is Training
learned to transform each input box so that :
Intersection-over-Union between the box and its
nearest ground-truth is maximized

Refined boxes




PASCAL VOC 2012 Challenge

PASCAL Visual Object Classes

O

O

Train/validation has 11,530 images containing
27,450 Regions of Interest (ROI) annotated
objects and 6,929 segmentations

Private testing set

50% training/validation and 50% for testing
Dataset contains 20 object categories/classes
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Person

Animal: bird, cat, cow, dog, horse, sheep
Vehicle: aeroplane, bicycle, boat, bus, car,
motorbike, train

Indoor: bottle, chair, dining table, potted plant,
sofa, tv/monitor

Each image has pixel-level segmentation
annotations, boundboxes annotations, and
object class annotations
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http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

Rich feature hierarchies for accurate object
detection and semantic segmentation




Overview

Object Detection models were complex ensemble systems that typically combine
multiple low-level image features with high-level context. So how to improve?

Combine two key insights:

1. Apply high-capacity convolutional neural networks (CNNs) to bottom-up region
proposals in order to localize and segment objects

2. Supervised pre-training for an auxiliary task, followed by domain-specific
fine-tuning, yields a significant performance boost when labeled training data
is scarce



R-CNN: Regions with CNN features
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Takes an input image

Extracts around 2000 bottom-up region proposals
Computes features for each proposal using a large CNN
Classifies each region using class-specific linear SVMs
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Called R-CNN due to this mixture of regions with CNN features

Out performed by over 15% on PASCAL VOC 2010 dataset



Key Takeaways

Simplified object detection methods

Gave a 30% relative improvement over the best
previous results on PASCAL VOC 2012

Apply high-capacity CNNs to bottom-up region
proposals in order to localize and segment objects
Supervised pre training on a large auxiliary
dataset, followed by domain-specific fine-tuning on
a small database, is an effective paradigm for

learning high-capacity CNNs when data is scarce



Fast R-CNN




Overview

Builds off R-CNN to classify objects using

DNNs

O

9x Faster than R-CNN
m  243xfaster during
inference(Test-time)

End-to-End trainable
Resolves some issues with R-CNN

O

O

O

Training is a multi-stage pipeline.

Training is expensive in space and time.

Object detection is slow
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Training

e Uses Rol pooling, pretrained networks,
Fine-tuning, Multi-task loss, mini-batch
sampling, back-propagation through Rol
Pooling layers

e Takes an entire image and set of object
proposals as an input

e Processes the whole image with multiple
convolutional and max pooling layers to create
a conv feature map.

e Aregion of interest pooling layer extracts a
fixed-length feature vector from the feature
map for each object proposal

e Each feature vector is fed into fully connected
layers that branch into two output layers,
softmax and bounding box regressor.

Outputs: bb X
X softmax regressor

Rol FC FC
pooling
layer [} £CS

Conv\- 1 Rol feature
feature map vector For each Rol



Results

® Main results: Fast R-CNN R-CNN | SPPnel
S M Ll S M L L

o SOTA mAP on VOCOY, rain time () | 12 20 95| 22 28 84| 25
2010 and 2012 train speedup | 18.3x 14.0x 88x| Ix 1x 1Ix| 34x

’ o . testrate (sim)| 0.10 0.5 032 9.8 12.1 470] 23

o Fast training and testing -withSVD | 006 008 022 - - - s

test speedup 98x  80x l46x| Ix Ix 1Ix 20

compared to R-CNN, > withSVD | 169x 150x 213x| - - - X
SPPnet VOCOTmAP | 57.1 592 669|585 602 66.0| 63.1

>withSVD | 565 587 666 - - - -

o Fine-Tuning conv layers in

Table 4. Runtime comparison between the same models in Fast R-
VGG16 improves mAP CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.
SPPnet uses the five scales specified in [ | 1]. TTiming provided by
the authors of [ | 1]. Times were measured on an Nvidia K40 GPU.



method train set | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv |mAP
SPPnet BB [ ]T | 07\ diff |73.9 72.3 62.5 515 44.4 744 73.0 744 423 736 577 703 746 743 542 340 564 564 67.9 73.5|63.1
R-CNNBB['] |07 734 77.0 634 454 44.6 75.1 78.1 79.8 405 73.7 622 794 78.1 73.1 642 356 66.8 672 704 711 66.0
FRCN [ours] 07 745 783 69.2 532 36.6 77.3 782 82.0 40.7 727 679 79.6 792 730 69.0 30.1 654 702 758 65.8| 66.9
FRCN [ours] 07 \ diff | 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 740 67.4 80.5 807 741 69.6 31.8 67.1 684 753 655 68.1
FRCN [ours] 07+12 [77.0 78.1 69.3 594 1383 81.6 78.6 86.7 428 788 689 84.7 820 766 699 318 701 748 804 704 | 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOCO7 trainval, 07 \ diff: 07
without “difficult” examples, 07+12: union of 07 and VOC12 trainval. f SPPnet results were prepared by the authors of [ 1].

method train set | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv | mAP
BabyLearning Prop. 77.7 738 62.3 488 454 673 67.0 80.3 413 708 49.7 79.5 747 786 645 360 69.9 557 704 61.7| 638
R-CNNBB['7] |12 79.3 724 63.1 440 444 64.6 663 849 388 673 484 823 750 767 657 358 66.2 548 69.1 588|629
SegDeepM 12+seg [82.3 752 67.1 50.7 49.8 71.1 69.6 882 425 712 50.0 857 766 818 693 415 719 622 732 64.6| 672
FRCN [ours] 12 80.1 744 67.7 494 414 742 68.8 878 419 70.1 502 86.1 773 811 704 333 670 633 77.2 60.0| 66.1
FRCN [ours] 07++12 [82.0 77.8 71.6 553 424 77.3 71.7 89.3 445 721 53.7 87.7 80.0 825 727 36.6 68.7 654 81.1 62.7| 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [ 7]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOCO07 test, and VOC12 trainval.

method train set | aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv |mAP
BabyLearning Prop. 78.0 742 61.3 457 427 682 66.8 802 40.6 70.0 49.8 79.0 745 779 640 353 679 557 68.7 626|632
NUS_NIN_c2000 | Unk. 80.2 73.8 61.9 43.7 43.0 703 67.6 80.7 419 69.7 51.7 782 752 769 65.1 38.6 683 580 68.7 63.3|63.8
R-CNNBB 1] |12 79.6 727 61.9 412 419 659 664 84.6 385 672 46.7 820 748 760 652 356 654 542 674 603|624
FRCN [ours] 12 80.3 747 66.9 469 377 739 68.6 877 417 71.1 51.1 860 778 79.8 69.8 32.1 655 638 76.4 61.7|65.7
FRCN [ours] 07++12 | 82.3 784 70.8 523 387 77.8 71.6 89.3 442 73.0 55.0 875 80.5 808 72.0 351 683 657 804 64.2 | 684

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS_NIN_c2000 use networks based on [ /]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.



Key Takeaways

—
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Higher detection quality than R-CNN

Training is single-stage, using a multi-task loss
Training can update all network layers

No disk storage is required for feature caching
Fast R-CNN trains the very deep VGG16 network
Ox faster than R-CNN, is 213x faster at test-time



Faster R-CNN: Towards Real-Time Object
Detection
with Region Proposal Networks




Overview

Fast R-CNN achieves near real-time rates using very deep networks, when ignoring
the time spent on region proposals.

- But above still relies on Selective Search which is much slower, 2s per image in
CPU Implementation. Even with EdgeBoxes it is still 0.2s per image

- Now, proposals are the computational bottleneck in state-of-the-art detection
systems

Region finding is still done with CPU, why not add onto GPU for faster processing of
input image?



Region Proposal Networks (RPNSs)

Takes image of any size as input and outputs a set of rectangular object proposals, each is

provided an objectiveness score
At each sliding-window location predict k region proposals where:

- the reg layer has 4k outputs encoding the coordinates of k boxes
- the cls layer outputs 2k scores that estimate probability of object / not-object

I 2k scores | I 4k coordinates I <= k anchor boxes

cls layer ‘ ’ reg layer
[ 256-d ]
t intermediate layer

' 'sl‘iding window

conv feature map




Key Takeaways

Speeds up region proposals time by processing
on GPU rather than a CPU

a. Computing proposals goes from 0.2s
(EdgeBoxes) to Y0.01s (20x improvement)
b. Nearly cost free!

The learned RPN also improves region proposal
quality and thus the overall object detection

accuracy



You Only Look Once:
Unified, Real-Time Object Detection




Overview

Introduced a new approach to objection

detection
o  Single regression problem
m  CNN simultaneously predicts
multiple bounding boxes and class
probabilities for those boxes.
m  Youonly look at the image once.
Real-Time Object Detector
o  Tested on Titan X GPU
o  Processes images at 45 fps
m Fast Yolo at 155 fps
e Allows for streaming with 25
milliseconds of latency

Achieves more than 2x mean average

precision (mAP) of other real-time systems.

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.



Training

e Pretrain convolutional layers on
ImageNet 1000-class comp

dataset.

o Pretrain first 20 conv layers
which are followed by an
average-pooling layer and a fully
connected layer.

o Final layer predicts class
probabilities and bounding box
coordinates.
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Figure 3: The Architecture. Our detection network has 24 convol 1 layers followed by 2 fully d layers. Alternating 1 x 1

convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.
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Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.
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Final detections

SxSgridon input

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an .S x S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S x S x (Bx*5+ C) tensor.



Fast YOLO

e [astest object detection method on PASCAL.
e Uses a CNN with 9 convolutional layer, instead of 24.
e Training at testing are the same.

1T H=

m— P



Person Detection in Artwork

e Used pretrained network on
Picasso art and People-Art to

VOC 2007 Picasso People-Art

test AP | AP BestF AP

: . YOLO 592 [ 533 059 45

generalizability/robustness. R.CNN a1 104 06 %

e R-CNN mAP falls off, YOLO DPM 432378 0458 32
. . Poselets [ ] 3.5 17.8 0271
maintains accuracy. 0 D&T[] 119 0ot

(b) Quantitative results on the VOC 2007, Picasso, and People-Art Datasets.
The Picasso Dataset evaluates on both AP and best F} score.



Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.



Results

e Makes less than half the
number of background
errors compared to Fast
R-CNN

e Best mAP for Real-Time
Detectors

e [astestimage detection at
the time.

Real-Time Detectors Train mAP FPS
100Hz DPM [ 1] 2007 16.0 100
30Hz DPM [ ] 2007  26.1 30
Fast YOLO 2007+2012 52.7 155
YOLO 2007+2012 63.4 45
Less Than Real-Time

Fastest DPM [~ /] 2007 304 15
R-CNN Minus R[] 2007 535 6
Fast R-CNN [ 1] 2007+2012 700 0.5
Faster R-CNN VGG-16["7'] 200742012 73.2 7
Faster R-CNN ZF [ /] 2007+2012  62.1 18
YOLO VGG-16 2007+2012 66.4 21

Table 1: Real-Time Systems on PASCAL VOC 2007. Compar-
ing the performance and speed of fast detectors. Fast YOLO is
the fastest detector on record for PASCAL VOC detection and is
still twice as accurate as any other real-time detector. YOLO is
10 mAP more accurate than the fast version while still well above
real-time in speed.



Results Cont.

VOC 2012 test mAP | aero bike bird boat bottle bus car cat chair cow table dog horse mbike personplant sheep sofa train tv

MR_CNN_MORE.DATA[''] | 73.9 | 85.5 829 76.6 57.8 62.7 794 772 86.6 55.0 79.1 622 87.0 834 847 789 453 734 658 803 740
HyperNet_- VGG 714 | 842 785 73.6 556 537 787 79.8 877 496 749 521 86.0 81.7 833 818 48.6 73.5 594 799 65.7
HyperNet_SP 713 | 84.1 783 733 555 53.6 786 79.6 875 495 749 521 856 816 832 81.6 484 732 593 79.7 65.6
Fast R-CNN + YOLO 70.7 | 83.4 785 735 55.8 434 79.1 73.1 894 494 755 57.0 875 809 81.0 747 418 715 685 821 672
MR_.CNN.S.CNN [ ] 70.7 | 85.0 79.6 71.5 553 57.7 76.0 739 84.6 50.5 743 61.7 855 799 817 764 410 69.0 61.2 777 72.1
Faster R-CNN [ ] 704 | 849 798 743 539 498 775 759 885 456 77.1 553 869 817 809 79.6 40.1 72.6 60.9 812 61.5
DEEP_ENS_COCO 70.1 [ 84.0 794 71.6 519 51.1 741 721 88.6 483 734 578 86.1 80.0 80.7 704 46.6 69.6 688 759 714
NoC [7] 68.8 | 82.8 79.0 71.6 523 53.7 741 69.0 849 469 743 53.1 850 81.3 795 722 389 724 595 76.7 68.1
Fast R-CNN [1] 68.4 | 823 784 708 523 38.7 778 71.6 893 442 730 550 875 80.5 80.8 72.0 35.1 683 657 804 642
UMICH_FGS_STRUCT 66.4 | 829 76.1 64.1 446 494 703 712 846 427 68.6 558 827 77.1 799 68.7 414 69.0 60.0 72.0 66.2
NUS_NIN_C2000 [ '] 63.8 | 80.2 73.8 61.9 437 43.0 703 67.6 80.7 419 69.7 51.7 782 752 769 65.1 38.6 683 58.0 687 633
BabyLearning [ ] 63.2 | 78.0 742 613 457 427 682 66.8 80.2 40.6 70.0 498 79.0 745 779 64.0 353 679 557 687 62.6
NUS_NIN 624|779 73.1 626 395 433 69.1 664 789 39.1 68.1 50.0 77.2 713 76.1 647 384 669 562 669 62.7
R-CNN VGG BB [ '] 624 (79.6 727 619 412 419 659 664 846 385 672 46.7 820 748 76.0 652 356 654 542 674 60.3
R-CNN VGG [ ] 59.2 | 76.8 709 56.6 37.5 369 629 63.6 81.1 357 643 439 804 716 740 60.0 30.8 634 52.0 63.5 587
YOLO 579 (77.0 672 57.7 383 227 683 559 814 362 60.8 485 772 723 713 635 289 522 548 739 50.8
Feature Edit [ 7] 56.3 | 74.6 69.1 544 39.1 331 652 627 69.7 30.8 560 44.6 700 644 71.1 60.2 333 613 464 61.7 578
R-CNNBB [ ] 533 | 71.8 65.8 52.0 34.1 32,6 59.6 60.0 698 27.6 520 41.7 69.6 613 683 57.8 29.6 57.8 409 593 54.1
SDS [17] 50.7 | 69.7 584 485 283 288 613 575 708 241 507 359 649 59.1 658 57.1 260 58.8 38.6 58.9 50.7
R-CNN['7] 49.6 | 68.1 63.8 46.1 294 279 56.6 57.0 659 265 48.7 395 662 573 654 532 262 545 381 506 51.6

Table 3: PASCAL VOC 2012 Leaderboard. YOLO compared with the full comp4 (outside data allowed) public leaderboard as of
November 6th, 2015. Mean average precision and per-class average precision are shown for a variety of detection methods. YOLO is the
only real-time detector. Fast R-CNN + YOLO is the forth highest scoring method, with a 2.3% boost over Fast R-CNN.



YOLO VISUAL

https://www.youtube.com/watch?v=ruDXYYIdV1E https://www.youtube.com/watch?v=MPU2Histivl



https://www.youtube.com/watch?v=ruDXYYldV1E
https://www.youtube.com/watch?v=MPU2HistivI

Key Takeaways

Trained on a loss function that directly
corresponds to detection performance and the
entire model is trained jointly

Generalizes well to new domains making it ideal
for applications that rely on fast, robust object
detection

Makes more localization errors but is less likely to

predict false positives on background



Focal Loss for Dense Object Detection




Overview

e Previously all models are two-stage
o region proposals and later classifying either background or foreground classes

e [tis not simplified to one-stage is due to the extreme foreground-background
class imbalance encountered during training of dense detectors

e Propose new method of focal loss which will down-weigh the loss assigned to
well-classified examples

e SO, create a simple one-stage object detector, RetinaNet, because it does
dense sampling of object locations in any input image

o Only concern is that one-stage detectors must process a much larger set
of candidate object locations regularly sampled across an image
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Generate a rich, multi-scale convolutional feature pyramid

Attach 2 subnetworks, one for classifying anchor boxes

The other for regressing from anchor boxes to ground-truth object boxes
Focuses on novel focal loss function which eliminates the accuracy gap



Key Takeaways

Class imbalance as the primary obstacle
preventing one-stage object detectors from
surpassing top-performing, two-stage methods
Propose focal loss which applies a modulating
term to the cross entropy loss in order to focus

learning on hard negative examples



e What other methods from other
sections do you think might be
helpful to improve

QueSthnS performance?

Discussion
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