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What is Image Retrieval? 

● Search for similar images 
based on input
○ Input can be a a full image 

or a subset of pixels

● Search is typically confined 
to a specific heuristic
○ Similarity, color space, 

frequency of pixel values

Input

Output



What is “search”?

● Merriam-Webster definition:
○ To look into or over carefully or thoroughly 

in an effort to find or discover something: 
such as
■ to examine in seeking something
■ To look through or explore by 

inspecting possible places of 
concealment or investigating 
suspicious circumstances

■ To read thoroughly : check
■ To examine a public record or register 

for information about land titles
■ To examine for articles concealed on 

the person
■ To look at as if to discover or 

penetrate intention or nature
● Image Retrieval involves both examining and 

checking data for heuristics

https://www.merriam-webster.com/dictionary/check


What does Image Retrieval examine? 

● Examine an input image 
for a heuristic
○ Color space, pixel values, 

pixel subsets, local and 
global features, etc.
■ SIFT, SURF, DELF, 

Harris Corner Detection
● Examine collection of 

images for the same 
heuristic



What does Image Retrieval check?

● Check heuristic(s) 
from an input image 
against the 
heuristic(s) from the 
collection of images
○ A comparison with 

a threshold



Image Retrieval is a Task



Image Retrieval != Object Classification && 
Image Retrieval != Object Detection 
● Image Retrieval searches for 

images based off of heuristics
○ The subject of the image (object) 

isn’t a concern
○ Heuristics about the objects in the 

image are of importance
● Does not utilize Image Classification

○ … But can be bolted on as an 
additional heuristic to search on

● The Image Retrieval process is 
different than the Object 
Identification and Classification 
processes



Curse of Dimensionality with Image Retrieval

● Curse of Dimensionality
○ More heuristics may 

not mean better 
results

○ Computational 
complexity increases 
with more heuristics

● Different approaches to 
choosing the best 
heuristics for analysis



Recall vs Precision for Search

● Recall
○ What proportion of actual 

positives was identified correctly?
○ In other words: What percentage 

of results are actually relevant to 
the search query?

○ Focussed on returning as many 
relevant images

● Recall is used to benchmark 
search functions

● Precision
○ What proportion of positive 

identifications was actually 
correct?

○ In other words: What 
percentage of relevant results 
are the most important?

○ Focussed on finding the most 
relevant image



Implementations

● TinEye ● Google Reverse Image Search

● Academic Research (Papers 
with Code’s measurements)
○ 445 papers 
○ 30 benchmarks
○ 51 datasets



Product quantization for 
nearest neighbor search



Overview

● By quantizing vectors into a different 
space, nearest neighbors can be 
quickly approximated
○ Quantizing example:

■ float32 -> float16 -> int8 ->int4 -> 
bool

■ Is destructive
● Product Quantization is used to 

generate a large number of 
centroids from a small input
○ Centroids used to cluster data

● Search is calculated by either the 
Euclidean Distance or Squared 
Distance between vectors in a 
dataset
○ Symmetric distance computation 

compares the centroids of two 
vectors to determine distance

○ Asymmetric distance computation 
looks only at one centroid



Example of Quantization

● https://qr.page/g/1sh0DjxLtAF

https://qr.page/g/1sh0DjxLtAF


Background

● Data can be clustered by its Euclidean 
Distance to other data points (nearest 
neighbor)
○ Pythagoras Theorem

■ c = √(a2 + b2), solve for c
○ Expensive due to the curse of dimensionality

● Clusters can be created by finding the 
approximate nearest neighbor

● Quantization is applied to reduce the memory 
usage of nearest neighbor algorithms
○ Nearest neighbor algorithms scale poorly with 

data

● Product quantization allows for the 
reduction of 128 dimensions from SIFT 
into groups of components that are 
then quantized
○ Instead of individual values being 

quantized or weighted over one 
another, vector components are 
grouped together and quantized from 
there

○ Is memory efficient



Problems

● Defining Accurate Similarity Measures
● Saying that a database object is the "nearest neighbor" of the query 

implies that we have a way to measure distances between the query 
and database objects. 

● The way we choose to measure distances can drastically affect the 
accuracy of the system. At the same time, defining a good distance 
measure can be a challenging task. 

● For example, what is the right way to measure similarity between two 
Web pages? A research problem that we are very interested in is 
designing methods for automatically learning a distance measure given 
many examples of pairs of similar objects and pairs of dissimilar objects.



Problems contd.

● Efficient Retrieval
● Finding the nearest neighbors of the query can be 

time-consuming, especially when we have a large database. The 
problem can be even worse when the distance measure we use is 
computationally expensive.

●At the same time, computationally expensive distance measures 
are often used in computer vision and pattern recognition in 
general. As knowledge expands in many different domains, and 
ever larger databases are used to store that knowledge, achieving 
efficient retrieval becomes increasingly important, and at the same 
time increasingly challenging.



K-Nearest Neighbors 

● The principle behind nearest 
neighbor methods is to find a 
predefined number of training 
samples closest in distance to the 
new point and predict the label from 
these. 
○ K-nearest neighbors is a naive 

approach
● Description of K-Nearest Neighbor 

models
○ https://www.youtube.com/watch?v

=4HKqjENq9OU&t=402s

https://www.youtube.com/watch?v=4HKqjENq9OU&t=402s
https://www.youtube.com/watch?v=4HKqjENq9OU&t=402s




Results

● Got state of the art performance on a 2 billion 
dataset by utilizing product quantization

● Tested symmetric (SDC) and asymmetric 
distance computation (ADC)
○ Found that ADC is computationally faster than 

SDC
● Implemented a method to perform 

non-exhaustive search efficiently
○ Use a coarse grained quantizer to estimate 

distances from chunks of an image. Then fine 
grained with product quantization

○ Relies on an Inverted File Asymmetric Distance 
Computation (IVFADC) 

● On the SIFT and GIST datasets, SDC, ADC, 
and IVFADC outperform existing solutions
○ SDC, ADC, and IVFADC beat out Hamming 

embedding codes
○ IVFADC beats out FLANN 





Discussion Questions

● When have you 
quantized data too far?

● With respect to images, 
what data can reliably 
be quantized without 
degrading recall 
performance?

● What other examples of 
quantization are regularly 
implemented?
○ In general, not just in CV



Optimized Product 
Quantization (OPQ)



WHAT IS PQ?
● Product quantization (PQ) is an effective vector quantization method. A 

product quantizer can generate an exponentially large codebook at very low 
memory/time cost. 

● The essence of PQ is to decompose the high-dimensional vector space into 
the Cartesian product of subspaces and then quantize these subspaces 
separately. The optimal space decomposition is important for the PQ 
performance, but still remains an unaddressed issue. 



WHAT IS OPQ?

● In their paper Tiezheng Ge et al. 2014, optimize PQ by minimizing 
quantization distortions w.r.t the space decomposition and the quantization 
codebooks. We present two novel solutions to this challenging optimization 
problem.

● The first solution iteratively solves two simpler sub-problems. The second 
solution is based on a Gaussian assumption and provides theoretical 
analysis of the optimality. We evaluate our optimized product quantizers in 
three applications: (1) compact encoding for exhaustive ranking, (2) building 
inverted multi-indexing for non-exhaustive search, and (3) compacting 
image representations for image retrieval

https://ieeexplore.ieee.org/author/37076101400


TO DO: OPQ IMPLEMENTATION (FB)



Locally Optimized Product 
Quantization
for Approximate Nearest 
Neighbor Search



Overview

● Authors proposed a new method 
for clustering data
○ Locally Optimized Product 

Quantization (LOPQ)
● Achieves state of the art 

performance on a variety of 
datasets
○ Centroids focus on reducing 

distortion rather than increasing 
coverage  



Locally Optimized Product Quantization (LOPQ) 

● Is a hierarchical quantization algorithm that produces codes of configurable length for data points. 

● These codes are efficient representations of the original vector and can be used in a variety of ways 
depending on application, including as hashes that preserve locality, as a compressed vector from 
which an approximate vector in the data space can be reconstructed, and as a representation from 
which to compute an approximation of the Euclidean distance between points.

● Conceptually, the LOPQ quantization process can be broken into 4 phases. The training process also 
fits these phases to the data in the same order.

https://youtu.be/RgxCaiQ-kig?t=2059

https://youtu.be/RgxCaiQ-kig

https://youtu.be/RgxCaiQ-kig?t=2059
https://youtu.be/RgxCaiQ-kig


TO DO: CONTINUE EXPLANATION  

1. The raw data vector is PCA'd to D dimensions (possibly the original dimensionality). This allows subsequent 
quantization to more efficiently represent the variation present in the data.

2. The PCA'd data is then product quantized [2] by two k-means quantizers. This means that each vector is split 
into two subvectors each of dimension D / 2, and each of the two subspaces is quantized independently with 
a vocabulary of size V. Since the two quantizations occur independently, the dimensions of the vectors are 
permuted such that the total variance in each of the two subspaces is approximately equal, which allows the 
two vocabularies to be equally important in terms of capturing the total variance of the data. This results in a 
pair of cluster ids that we refer to as "coarse codes".

3. The residuals of the data after coarse quantization are computed. The residuals are then locally projected 
independently for each coarse cluster. This projection is another application of PCA and dimension 
permutation on the residuals, and it is "local" in the sense that there is a different projection for each cluster in 
each of the two coarse vocabularies. These local rotations make the next and final step, another application of 
product quantization, very efficient in capturing the variance of the residuals.

4. The locally projected data is then product quantized a final time by M subquantizers, resulting in M "fine 
codes". Usually the vocabulary for each of these subquantizers will be a power of 2 for effective storage in a 
search index. With vocabularies of size 256, the fine codes for each indexed vector will require M bytes to 
store in the index.



Background

● Product Quantization (PQ) is fast, but 
centroids don’t have supported data

● Optimized Product Quantization 
(OPQ) allows for centroids to be 
rotated to better fit the data model

● LOCP extends  upon PQ and OPQ by 
using their:
○ a coarse quantizer
○ a rotation matrix (from OPQ)
○ product quantizers but with local 

optimizations

● Quantization speeds up search 
by implementing lossy 
compression algorithms on data



Results

● LOPQ requires more space 
and time overhead in 
comparison to PQ, but is 
constant in data size

● Achieves state of the art 
performance on a variety of 
large datasets

● “Embarrassingly simple to 
apply”



Discussion Questions

● Why can’t Product 
Quantization regenerate its 
original inputs?
○ Example: .zip files utilize 

lossy compression 
algorithms, why can’t PQ?

○ Should they be concerned 
about this at all?



Efficient Large-scale 
Approximate Nearest Neighbor 
Search on the GPU



Overview + Results

● Creates a new data structure 

off of PQ to allow for GPU 

optimizations

● Performs well, but is not state 

of the art in recall

● Is significantly faster than CPU 

approximate nearest neighbor 

algorithms



Background

● Approximate nearest neighbor 
algorithms utilize CPUs and KD-Tree 
data structures

● Memory restrictions with GPUs make 
GPU optimizations difficult for this task

● Extends the work on Product 
Quantization by introducing a new data 
structure called a PQ Tree (PQT)
○ Built upon a combination of an 

inverted multi-index and hierarchical 
PQ



Discussion Questions

● What did you think of the paper 
holistically?

● The authors created a new data 
structure to solve this problem using 
GPUs. Could this be done on CPUs 
for similar performance?

● Their results weren’t state of the art 
for recall, thus raising the question 
that aside from speed, why bother 
utilizing this method for the 
purposes of Image Retrieval? 



Fast Local Spatial Verification 
for Feature-Agnostic
Large-Scale Image Retrieval



Overview

● Adapt image retrieval to 
composite images to 
determine what composited 
images make up a scene

● Proposed Objects in Scene to 
Objects in Scene (OS2OS) 
score

● A method of Content Based 
Image Recognition



Background

● Implementation involves:
○ Spatially Constrained Similarity Measure to avoid 

querying areas of interest ahead of analysis. 

○ A coarse Pairwise Geometric Matching to 

accumulate Hough votes in bins for analysis

○ A two stage, O(n) solution to remove spurious 
solutions 

○ A retrieval score (OS2OS) to compare the 

returned image components

● Current approximate nearest neighbor 

algorithms utilize local and global features + 

quantization
○ SIFT, SURF, LIFT, and DELF

○ OPQ, Generalized Product Quantization + 

Inverted File Indices

● Region Based Image Retrieval

● Object Based Image Retrieval





Results

● Implementing OS2OS in existing CBIR 

algorithms increases the overall performance 

of the algorithms
○ OS2OS can be implemented either in CPU 

based or GPU based algorithms and still 

provide performance improvements



Discussion Questions

● Would OS2OS work well with composite 

images of composite images?
○ Does this solution fail to provide performance 

benefits with respect to recursion?

● Is this work limited by the amount of data that 

was able to be searched through?
○ In other words, would more data = better 

performance?



Latent Variables in Computer 
Vision



Understanding latent space
●What is latent space? 

○ If you must describe latent space in one sentence, it simply means a representation of compressed 
data. 

○ The concept of “latent space” is important because its utility is at the core of ‘deep learning’ — learning 
the features of data and simplifying data representations for the purpose of finding patterns.



● A latent space or vector is basically a distribution of the latent variables above. It is also 
commonly referred to as a feature representation.

● Think of a latent vector as a collection of an image's 'features', I.e. variables that describe 
what is going on in an image, such as the setting (medieval or modern), the time of day, and 
so on. This is not exactly how it works - it is just an intuition. The idea is that the latent 
variables represent high level attributes, rather than raw pixels with little meaning.

● Latent variables can be used when connecting computer vision models to models from 
other domains that do not deal with image data. For example, a common task in natural 
language processing is image captioning. To generate a caption for an image, an NLP model 
would require the image's latent variables. That is where they get the understanding 
necessary to describe what is going on in the image.



How is data simplified?       

●Why do we compress data in ML?

● Data is compressed in machine learning to learn important information about data points

● Say we would like to train a model to classify an image using a fully convolutional neural 
network (FCN). (i.e., output digit number given image of digit). As the model ‘learns’, it is simply 
learning features at each layer (edges, angles, etc.) and attributing a combination of features to 
a specific output.



Data compression
● But each time the model learns through a data point, the dimensionality of the image is 

first reduced before it is ultimately increased. When the dimensionality is reduced, we 
consider this a form of lossy compression.

● Because the model is required to then reconstruct the compressed data, it must learn to 
store all relevant information and disregard the noise. This is the value of compression- it 
allows us to get rid of any extraneous information, and only focus on the most important 
features.

● This ‘compressed state’ is the Latent Space Representation of our data.



Compressed Data = 
Space? 

● In this rather simplistic example, let’s say our 
original dataset are images with dimensions 5 
x 5 x 1. We will set our latent space 
dimensions to be 3 x 1, meaning our 
compressed data point is a vector with 
3-dimensions.

● Now, each compressed data point is 
uniquely defined by only 3 numbers. That 
means we can graph this data on a 3D Plane 
(One number is x, the other y, the other z).



●This is the “space” that we are 
referring to.

●Whenever we graph points or think 
of points in latent space, we can 
imagine them as coordinates in 
space in which points that 
are “similar” are closer together on 
the graph.



What defines ‘similarity’ 
between points?

● If we look at three images, two of a chair and one of a desk, we will 
easily say that the two chair images are the most similar whereas the 
desk is the most different from either of the chair images.

● But what makes these two chair images “more similar?” A chair 
has distinguishable features (i.e., back-rest, no drawer, connections 
between legs). These can all be ‘understood’ by our models by 
learning patterns in edges, angles, etc.

● As explained, such features are packaged in the latent space 
representation of data.



● Thus, as dimensionality is 
reduced, the ‘extraneous’ 
information which is distinct 
to each image (i.e.,. chair 
color) is ‘removed’ from our 
latent space representation, 
since only the 
most important features of 
each image are stored in the 
latent space representations.

● As a result, as we reduce 
dimensionality, the 
representations of both chairs 
become less distinct and 
more similar. If we were to 
imagine them in space, they 
would be ‘closer’ together.



●Generally, any two similar images will lie closer to each other in the latent space 
whereas dissimilar images will lie far away. This is the basic governing rule with 
which we will train our model. 

●Once we do this, the retrieval part simply scours the latent space to pick up the 
closest image in the latent space given the representation of the query image. 
Most of the time, it is done with the help of nearest neighbor search.
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