
Image Retrieval
Jesus Cantu & Nicholas Synovic

What is Image Retrieval?

● Search for similar images
based on input
○ Input can be a a full image

or a subset of pixels

● Search is typically confined
to a specific heuristic
○ Similarity, color space,

frequency of pixel values

Input

Output

What is “search”?

● Merriam-Webster definition:
○ To look into or over carefully or thoroughly

in an effort to find or discover something:
such as
■ to examine in seeking something
■ To look through or explore by

inspecting possible places of
concealment or investigating
suspicious circumstances

■ To read thoroughly : check
■ To examine a public record or register

for information about land titles
■ To examine for articles concealed on

the person
■ To look at as if to discover or

penetrate intention or nature
● Image Retrieval involves both examining and

checking data for heuristics

https://www.merriam-webster.com/dictionary/check

What does Image Retrieval examine?

● Examine an input image
for a heuristic
○ Color space, pixel values,

pixel subsets, local and
global features, etc.
■ SIFT, SURF, DELF,

Harris Corner Detection
● Examine collection of

images for the same
heuristic

What does Image Retrieval check?

● Check heuristic(s)
from an input image
against the
heuristic(s) from the
collection of images
○ A comparison with

a threshold

Image Retrieval is a Task

Image Retrieval != Object Classification &&
Image Retrieval != Object Detection
● Image Retrieval searches for

images based off of heuristics
○ The subject of the image (object)

isn’t a concern
○ Heuristics about the objects in the

image are of importance
● Does not utilize Image Classification

○ … But can be bolted on as an
additional heuristic to search on

● The Image Retrieval process is
different than the Object
Identification and Classification
processes

Curse of Dimensionality with Image Retrieval

● Curse of Dimensionality
○ More heuristics may

not mean better
results

○ Computational
complexity increases
with more heuristics

● Different approaches to
choosing the best
heuristics for analysis

Recall vs Precision for Search

● Recall
○ What proportion of actual

positives was identified correctly?
○ In other words: What percentage

of results are actually relevant to
the search query?

○ Focussed on returning as many
relevant images

● Recall is used to benchmark
search functions

● Precision
○ What proportion of positive

identifications was actually
correct?

○ In other words: What
percentage of relevant results
are the most important?

○ Focussed on finding the most
relevant image

Implementations

● TinEye ● Google Reverse Image Search

● Academic Research (Papers
with Code’s measurements)
○ 445 papers
○ 30 benchmarks
○ 51 datasets

Product quantization for
nearest neighbor search

Overview

● By quantizing vectors into a different
space, nearest neighbors can be
quickly approximated
○ Quantizing example:

■ float32 -> float16 -> int8 ->int4 ->
bool

■ Is destructive
● Product Quantization is used to

generate a large number of
centroids from a small input
○ Centroids used to cluster data

● Search is calculated by either the
Euclidean Distance or Squared
Distance between vectors in a
dataset
○ Symmetric distance computation

compares the centroids of two
vectors to determine distance

○ Asymmetric distance computation
looks only at one centroid

Example of Quantization

● https://qr.page/g/1sh0DjxLtAF

https://qr.page/g/1sh0DjxLtAF

Background

● Data can be clustered by its Euclidean
Distance to other data points (nearest
neighbor)
○ Pythagoras Theorem

■ c = √(a2 + b2), solve for c
○ Expensive due to the curse of dimensionality

● Clusters can be created by finding the
approximate nearest neighbor

● Quantization is applied to reduce the memory
usage of nearest neighbor algorithms
○ Nearest neighbor algorithms scale poorly with

data

● Product quantization allows for the
reduction of 128 dimensions from SIFT
into groups of components that are
then quantized
○ Instead of individual values being

quantized or weighted over one
another, vector components are
grouped together and quantized from
there

○ Is memory efficient

Problems

● Defining Accurate Similarity Measures
● Saying that a database object is the "nearest neighbor" of the query

implies that we have a way to measure distances between the query
and database objects.

● The way we choose to measure distances can drastically affect the
accuracy of the system. At the same time, defining a good distance
measure can be a challenging task.

● For example, what is the right way to measure similarity between two
Web pages? A research problem that we are very interested in is
designing methods for automatically learning a distance measure given
many examples of pairs of similar objects and pairs of dissimilar objects.

Problems contd.

● Efficient Retrieval
● Finding the nearest neighbors of the query can be

time-consuming, especially when we have a large database. The
problem can be even worse when the distance measure we use is
computationally expensive.

●At the same time, computationally expensive distance measures
are often used in computer vision and pattern recognition in
general. As knowledge expands in many different domains, and
ever larger databases are used to store that knowledge, achieving
efficient retrieval becomes increasingly important, and at the same
time increasingly challenging.

K-Nearest Neighbors

● The principle behind nearest
neighbor methods is to find a
predefined number of training
samples closest in distance to the
new point and predict the label from
these.
○ K-nearest neighbors is a naive

approach
● Description of K-Nearest Neighbor

models
○ https://www.youtube.com/watch?v

=4HKqjENq9OU&t=402s

https://www.youtube.com/watch?v=4HKqjENq9OU&t=402s
https://www.youtube.com/watch?v=4HKqjENq9OU&t=402s

Results

● Got state of the art performance on a 2 billion
dataset by utilizing product quantization

● Tested symmetric (SDC) and asymmetric
distance computation (ADC)
○ Found that ADC is computationally faster than

SDC
● Implemented a method to perform

non-exhaustive search efficiently
○ Use a coarse grained quantizer to estimate

distances from chunks of an image. Then fine
grained with product quantization

○ Relies on an Inverted File Asymmetric Distance
Computation (IVFADC)

● On the SIFT and GIST datasets, SDC, ADC,
and IVFADC outperform existing solutions
○ SDC, ADC, and IVFADC beat out Hamming

embedding codes
○ IVFADC beats out FLANN

Discussion Questions

● When have you
quantized data too far?

● With respect to images,
what data can reliably
be quantized without
degrading recall
performance?

● What other examples of
quantization are regularly
implemented?
○ In general, not just in CV

Optimized Product
Quantization (OPQ)

WHAT IS PQ?
● Product quantization (PQ) is an effective vector quantization method. A

product quantizer can generate an exponentially large codebook at very low
memory/time cost.

● The essence of PQ is to decompose the high-dimensional vector space into
the Cartesian product of subspaces and then quantize these subspaces
separately. The optimal space decomposition is important for the PQ
performance, but still remains an unaddressed issue.

WHAT IS OPQ?

● In their paper Tiezheng Ge et al. 2014, optimize PQ by minimizing
quantization distortions w.r.t the space decomposition and the quantization
codebooks. We present two novel solutions to this challenging optimization
problem.

● The first solution iteratively solves two simpler sub-problems. The second
solution is based on a Gaussian assumption and provides theoretical
analysis of the optimality. We evaluate our optimized product quantizers in
three applications: (1) compact encoding for exhaustive ranking, (2) building
inverted multi-indexing for non-exhaustive search, and (3) compacting
image representations for image retrieval

https://ieeexplore.ieee.org/author/37076101400

TO DO: OPQ IMPLEMENTATION (FB)

Locally Optimized Product
Quantization
for Approximate Nearest
Neighbor Search

Overview

● Authors proposed a new method
for clustering data
○ Locally Optimized Product

Quantization (LOPQ)
● Achieves state of the art

performance on a variety of
datasets
○ Centroids focus on reducing

distortion rather than increasing
coverage

Locally Optimized Product Quantization (LOPQ)

● Is a hierarchical quantization algorithm that produces codes of configurable length for data points.

● These codes are efficient representations of the original vector and can be used in a variety of ways
depending on application, including as hashes that preserve locality, as a compressed vector from
which an approximate vector in the data space can be reconstructed, and as a representation from
which to compute an approximation of the Euclidean distance between points.

● Conceptually, the LOPQ quantization process can be broken into 4 phases. The training process also
fits these phases to the data in the same order.

https://youtu.be/RgxCaiQ-kig?t=2059

https://youtu.be/RgxCaiQ-kig

https://youtu.be/RgxCaiQ-kig?t=2059
https://youtu.be/RgxCaiQ-kig

TO DO: CONTINUE EXPLANATION

1. The raw data vector is PCA'd to D dimensions (possibly the original dimensionality). This allows subsequent
quantization to more efficiently represent the variation present in the data.

2. The PCA'd data is then product quantized [2] by two k-means quantizers. This means that each vector is split
into two subvectors each of dimension D / 2, and each of the two subspaces is quantized independently with
a vocabulary of size V. Since the two quantizations occur independently, the dimensions of the vectors are
permuted such that the total variance in each of the two subspaces is approximately equal, which allows the
two vocabularies to be equally important in terms of capturing the total variance of the data. This results in a
pair of cluster ids that we refer to as "coarse codes".

3. The residuals of the data after coarse quantization are computed. The residuals are then locally projected
independently for each coarse cluster. This projection is another application of PCA and dimension
permutation on the residuals, and it is "local" in the sense that there is a different projection for each cluster in
each of the two coarse vocabularies. These local rotations make the next and final step, another application of
product quantization, very efficient in capturing the variance of the residuals.

4. The locally projected data is then product quantized a final time by M subquantizers, resulting in M "fine
codes". Usually the vocabulary for each of these subquantizers will be a power of 2 for effective storage in a
search index. With vocabularies of size 256, the fine codes for each indexed vector will require M bytes to
store in the index.

Background

● Product Quantization (PQ) is fast, but
centroids don’t have supported data

● Optimized Product Quantization
(OPQ) allows for centroids to be
rotated to better fit the data model

● LOCP extends upon PQ and OPQ by
using their:
○ a coarse quantizer
○ a rotation matrix (from OPQ)
○ product quantizers but with local

optimizations

● Quantization speeds up search
by implementing lossy
compression algorithms on data

Results

● LOPQ requires more space
and time overhead in
comparison to PQ, but is
constant in data size

● Achieves state of the art
performance on a variety of
large datasets

● “Embarrassingly simple to
apply”

Discussion Questions

● Why can’t Product
Quantization regenerate its
original inputs?
○ Example: .zip files utilize

lossy compression
algorithms, why can’t PQ?

○ Should they be concerned
about this at all?

Efficient Large-scale
Approximate Nearest Neighbor
Search on the GPU

Overview + Results

● Creates a new data structure

off of PQ to allow for GPU

optimizations

● Performs well, but is not state

of the art in recall

● Is significantly faster than CPU

approximate nearest neighbor

algorithms

Background

● Approximate nearest neighbor
algorithms utilize CPUs and KD-Tree
data structures

● Memory restrictions with GPUs make
GPU optimizations difficult for this task

● Extends the work on Product
Quantization by introducing a new data
structure called a PQ Tree (PQT)
○ Built upon a combination of an

inverted multi-index and hierarchical
PQ

Discussion Questions

● What did you think of the paper
holistically?

● The authors created a new data
structure to solve this problem using
GPUs. Could this be done on CPUs
for similar performance?

● Their results weren’t state of the art
for recall, thus raising the question
that aside from speed, why bother
utilizing this method for the
purposes of Image Retrieval?

Fast Local Spatial Verification
for Feature-Agnostic
Large-Scale Image Retrieval

Overview

● Adapt image retrieval to
composite images to
determine what composited
images make up a scene

● Proposed Objects in Scene to
Objects in Scene (OS2OS)
score

● A method of Content Based
Image Recognition

Background

● Implementation involves:
○ Spatially Constrained Similarity Measure to avoid

querying areas of interest ahead of analysis.

○ A coarse Pairwise Geometric Matching to

accumulate Hough votes in bins for analysis

○ A two stage, O(n) solution to remove spurious
solutions

○ A retrieval score (OS2OS) to compare the

returned image components

● Current approximate nearest neighbor

algorithms utilize local and global features +

quantization
○ SIFT, SURF, LIFT, and DELF

○ OPQ, Generalized Product Quantization +

Inverted File Indices

● Region Based Image Retrieval

● Object Based Image Retrieval

Results

● Implementing OS2OS in existing CBIR

algorithms increases the overall performance

of the algorithms
○ OS2OS can be implemented either in CPU

based or GPU based algorithms and still

provide performance improvements

Discussion Questions

● Would OS2OS work well with composite

images of composite images?
○ Does this solution fail to provide performance

benefits with respect to recursion?

● Is this work limited by the amount of data that

was able to be searched through?
○ In other words, would more data = better

performance?

Latent Variables in Computer
Vision

Understanding latent space
●What is latent space?

○ If you must describe latent space in one sentence, it simply means a representation of compressed
data.

○ The concept of “latent space” is important because its utility is at the core of ‘deep learning’ — learning
the features of data and simplifying data representations for the purpose of finding patterns.

● A latent space or vector is basically a distribution of the latent variables above. It is also
commonly referred to as a feature representation.

● Think of a latent vector as a collection of an image's 'features', I.e. variables that describe
what is going on in an image, such as the setting (medieval or modern), the time of day, and
so on. This is not exactly how it works - it is just an intuition. The idea is that the latent
variables represent high level attributes, rather than raw pixels with little meaning.

● Latent variables can be used when connecting computer vision models to models from
other domains that do not deal with image data. For example, a common task in natural
language processing is image captioning. To generate a caption for an image, an NLP model
would require the image's latent variables. That is where they get the understanding
necessary to describe what is going on in the image.

How is data simplified?

●Why do we compress data in ML?

● Data is compressed in machine learning to learn important information about data points

● Say we would like to train a model to classify an image using a fully convolutional neural
network (FCN). (i.e., output digit number given image of digit). As the model ‘learns’, it is simply
learning features at each layer (edges, angles, etc.) and attributing a combination of features to
a specific output.

Data compression
● But each time the model learns through a data point, the dimensionality of the image is

first reduced before it is ultimately increased. When the dimensionality is reduced, we
consider this a form of lossy compression.

● Because the model is required to then reconstruct the compressed data, it must learn to
store all relevant information and disregard the noise. This is the value of compression- it
allows us to get rid of any extraneous information, and only focus on the most important
features.

● This ‘compressed state’ is the Latent Space Representation of our data.

Compressed Data =
Space?

● In this rather simplistic example, let’s say our
original dataset are images with dimensions 5
x 5 x 1. We will set our latent space
dimensions to be 3 x 1, meaning our
compressed data point is a vector with
3-dimensions.

● Now, each compressed data point is
uniquely defined by only 3 numbers. That
means we can graph this data on a 3D Plane
(One number is x, the other y, the other z).

●This is the “space” that we are
referring to.

●Whenever we graph points or think
of points in latent space, we can
imagine them as coordinates in
space in which points that
are “similar” are closer together on
the graph.

What defines ‘similarity’
between points?

● If we look at three images, two of a chair and one of a desk, we will
easily say that the two chair images are the most similar whereas the
desk is the most different from either of the chair images.

● But what makes these two chair images “more similar?” A chair
has distinguishable features (i.e., back-rest, no drawer, connections
between legs). These can all be ‘understood’ by our models by
learning patterns in edges, angles, etc.

● As explained, such features are packaged in the latent space
representation of data.

● Thus, as dimensionality is
reduced, the ‘extraneous’
information which is distinct
to each image (i.e.,. chair
color) is ‘removed’ from our
latent space representation,
since only the
most important features of
each image are stored in the
latent space representations.

● As a result, as we reduce
dimensionality, the
representations of both chairs
become less distinct and
more similar. If we were to
imagine them in space, they
would be ‘closer’ together.

●Generally, any two similar images will lie closer to each other in the latent space
whereas dissimilar images will lie far away. This is the basic governing rule with
which we will train our model.

●Once we do this, the retrieval part simply scours the latent space to pick up the
closest image in the latent space given the representation of the query image.
Most of the time, it is done with the help of nearest neighbor search.

References:
● For Image Retrieval:
● https://towardsdatascience.com/a-hands-on-introduction-to-image-retrieval-in-deep-learning-w

ith-pytorch-651cd6dba61e
● For Latent Space:
● https://towardsdatascience.com/understanding-latent-space-in-machine-learning-de5a7c687d8d
● https://dev.to/badasstechie/latent-variables-in-computer-vision-14fa
● For Nearest Neighbor Classification:
● https://athitsos.utasites.cloud/projects/nearest_neighbors/
● For LOPQ:
● https://github.com/yahoo/lopq/blob/master/README.md
● https://lou.dev/talks/2018-08-09-lopq#:~:text=Locally%20Optimized%20Product%20Quantization

%20is,and%20high%20dimensionality%20data%20sets.
● For OPQ:
● http://kaiminghe.com/cvpr13/index.html

https://towardsdatascience.com/a-hands-on-introduction-to-image-retrieval-in-deep-learning-with-pytorch-651cd6dba61e
https://towardsdatascience.com/a-hands-on-introduction-to-image-retrieval-in-deep-learning-with-pytorch-651cd6dba61e
https://towardsdatascience.com/understanding-latent-space-in-machine-learning-de5a7c687d8d
https://athitsos.utasites.cloud/projects/nearest_neighbors/
https://github.com/yahoo/lopq/blob/master/README.md
https://lou.dev/talks/2018-08-09-lopq#:~:text=Locally%20Optimized%20Product%20Quantization%20is,and%20high%20dimensionality%20data%20sets
https://lou.dev/talks/2018-08-09-lopq#:~:text=Locally%20Optimized%20Product%20Quantization%20is,and%20high%20dimensionality%20data%20sets
http://kaiminghe.com/cvpr13/index.html

