Image Retrieval

Jesus Cantu & Nicholas Synovic



What is Image Retrieval?

® Search for similar images
pased on input

o Input can be a a full image
Or a subset of pixels

® Search is typically confined
to a specific heuristic

o Similarity, color space,
frequency of pixel values




What is “search”?

Merriam-Webster definition:
o To look into or over carefully or thoroughly O
in an effort to find or discover something;:

Image Retrieval involves both examining and
checking data for heuristics

such as 3.'0‘

to examine in seeking something 5
To look through or explore by @ @@
inspecting possible places of 2

concealment or investigating
suspicious circumstances

To read thoroughly : check Searc...

To examine a public record or register

for information about land titles ( v
To examine for articles concealed on 0' .

the person
To look at as if to discover or
penetrate intention or nature



https://www.merriam-webster.com/dictionary/check

What does Image Retrieval examine?

e Examine an input image
for a heuristic
o Color space, pixel values,

pixel subsets, local and
global features, etc.

m SIFT, SURF, DELF,
Harris Corner Detection

e Examine collection of
iImages for the same
heuristic




What does Image Retrieval check?

e Check heuristic(s)

from an inputimage [ " & _

against the T m iy
heuristic(s) from the - .
collection of images /—+—+—

3

o A comparison with G
a threshold



Image Retrieval is a Task
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Image Retrieval != Object Classification &&
Image Retrieval != Object Detection

e |mage Retrieval searches for
images based off of heuristics
O The subject of the image (object)
Isn't a concern
O Heuristics about the objects in the
image are of importance
e Does not utilize Image Classification
o ..But can be bolted on as an Il e
additional heuristic to search on D = Qe
e The Image Retrieval process is — .
different than the Object
|dentification and Classification
processes
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Curse of Dimensionality with Image Retrieval

e Curse of Dimensionality
o More heuristics may

0000000000

not mean better W10 o
results ety RE AN
o Computational [ W Lo
complexity increases 1 - Ry
with more heuristics 1113111311 Lpa — oA
e Different approaches to Pt
(B) 2-D (C)3-D

choosing the best
heuristics for analysis



Recall vs Precision for Search

e Recall e Precision
o What proportion of actual o \What proportion of positive

positives was identified correctly: identifications was actually
o In other words: What percentage

correct?
of results are actually relevant to
the search query? o In other words: What
o Focussed on returning as many percentage of relevant results
relevant images are the most important?
e Recallis used to benchmark o Focussed on ﬁndmg the most

search functions relevant image



Implementations

e TinEye e (Google Reverse Image Search

Reverse Image Search

Find where images appear online. How to use TinEye.

@ upload Paste or enter image URL

e Academic Research (Papers
with Code's measurements)
O 445 papers
O 30 benchmarks
O K1 datasets




Product quantization for
hearest neighbor search



Overview

e By quantizing vectors into a different e Search is calculated by either the
space, nearest neighbors can be Euclidean Distance or Squared
quickly approximated Distance between vectors in a

o Quantizing example: dataset
m float32 -> float16 -> Int8 ->int4 ->

o Symmetric distance computation
compares the centroids of two
vectors to determine distance

o Asymmetric distance computation
looks only at one centroid

bool
m |s destructive

e Product Quantization is used to
generate a large number of
centroids from a small input

o Centroids used to cluster data



Example of Quantization

e https./arpage/a/1shoDixLtAF @ Y

@-'.*’.{ﬂ"



https://qr.page/g/1sh0DjxLtAF

Background

Data can be clustered by its Euclidean
Distance to other data points (nearest
neighbor)

o Pythagoras Theorem

m C=V2+b2) solve forc
o Expensive due to the curse of dimensionality

Clusters can be created by finding the
approximate nearest neighbor

Quantization is applied to reduce the memory
usage of nearest neighbor algorithms

o Nearest neighbor algorithms scale poorly with
data

Product quantization allows for the
reduction of 128 dimensions from SIFT
into groups of components that are

then quantized
o Instead of individual values being
quantized or weighted over one
another, vector components are
grouped together and quantized from
there
o Is memory efficient



Problems

e Defining Accurate Similarity Measures

e Saying that a database object is the "nearest neighbor” of the query
implies that we have a way to measure distances between the query
and database objects.

e The way we choose to measure distances can drastically affect the
accuracy of the system. At the same time, defining a good distance
measure can be a challenging task.

e For example, what is the right way to measure similarity between two
Web pages? A research problem that we are very interested in is
designing methods for automatically learning a distance measure given
many examples of pairs of similar objects and pairs of dissimilar objects.



Problems contd.

e Efficient Retrieval

e Finding the nearest neighbors of the query can be
time-consuming, especially when we havé a large database. The
problem can be even worse when the distance measure we use Is
computationally expensive.

e At the same time, computationally expensive distance measures
are often used in computer vision'and pattern recognition in
general. As knowledge expands in many different domains, and
ever larger databases are used to store that knowledge, achieving
efficient retrieval becomes increasingly important, and at the same
time increasingly challenging.



K-Nearest Neighbors

® The principle behind nearest

neighbor methods is to find a
predefined number of training
samples closest in distance to the
new point and predict the label from

these.
O K-nearest neighbors is a naive
approach
e Description of K-Nearest Neighbor

models
O https:./wwwyoutube.com/watch?v

=AHKg|ENgoOU&t=402s
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https://www.youtube.com/watch?v=4HKqjENq9OU&t=402s
https://www.youtube.com/watch?v=4HKqjENq9OU&t=402s

symmetric case asymmetric case

Fig. 2.  Illustration of the symmetric and asymmetric distance
computation. The distance d(z,y) is estimated with either the dis-
tance d(gq(x),q(y)) (left) or the distance d(x,q(y)) (right). The
mean squared error on the distance is on average bounded by the
quantization error.



Results

e (ot state of the art performance on a 2 billion
dataset by utilizing product quantization
e TJested symmetric (SDC) and asymmetric
distance computation (ADC)
o Found that ADC is computationally faster than
SDC
e Implemented a method to perform
non-exhaustive search efficiently
o Use a coarse grained quantizer to estimate
distances from chunks of an image. Then fine
grained with product quantization
o Relies on an Inverted File Asymmetric Distance
Computation (IVFADC)

On the SIFT and GIST datasets, SDC, ADC,
and IVFADC outperform existing solutions

O

O

SDC, ADC, and IVFADC beat out Hamming
embedding codes
IVFADC beats out FLANN
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Fig. 8.  SIFT dataset: recall@R for varying values of R. Com-
parison of the different approaches SDC, ADC, IVFADC, spectral
hashing [19] and HE [20]. We have used m=8, k*=256 for SDC/ADC
and k'=1024 for HE [20] and IVFADC.

1-recall at 1

Fig. 10. IVFADC vs FLANN: trade-offs between search quality
(I-recall@1) and search time. The IVFADC method is parametrized
by the shortlist size R used for re-ranking the vector with the .2
distance, and the two parameters w and k" of the inverted file, which
correspond to the number of assignments and to the number of coarse
centroids.

1 e " method  parameters search  average number of | recall@100
P =™ s~ P o time (ms)  code comparisons
s | I SDC 16.8 1000991 0.446
ADC 17:2 1000991 0.652
4 06 : - IVFADC k'= 1024, w=1 I5 1947 0.308
3 /’l/ k'= 1024, w=38 8.8 27818 0.682
Eooap A 3 mre | K= 1024, w= 65.9 101158 0.744
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Fig. 9. GIST dataset: recall @R for varying values of R. Comparison

GIST DATASET (500 QUERIES): SEARCH TIMINGS FOR 64-BIT CODES AND DIFFERENT METHODS. WE HAVE USED m=8 AND k*=256
FOR SDC, ADC AND IVFADC.

of the different approaches SDC, ADC, IVFADC and spectral hash-
ing [19]. We have used m=8, k*=256 for SDC/ADC and k' = 1024
for IVFADC.



Discussion Questions

e When have you e \What other examples of
guantized data too far? quantization are regularly
e \With respect to images, mplemented?
what data can reliably o In general, not just in CV
be quantized without
degrading recall
performance?



Optimized Product
Quantization (OPQ)



WHAT IS PQ?

e Product quantization (PQ) is an effective vector quantization method. A
product quantizer can generate an exponentially large codebook at very low
memory/time cost.

e T[he essence of PQ is to decompose the high-dimensional vector space into
the Cartesian product of subspaces and then quantize these subspaces
separately. The optimal space decomposition is important for the PQ
performance, but still remains an unaddressed issue.

$ R e s A _
®. R . Q .&li0. ©
o W55 B, Y A
WRDE, XA O SoRLee o
O 4 TR e T LRI
Ghelvey R . 0 3 BLERE O
TN Y R Ry
RN (R, o .o d. 9
k-means PQ ITQ OoPQ



WHAT IS OPQ?

In their paper Tiezheng Ge et al. 2014, optimize PQ by minimizing
quantization distortions w.r.t the space decomposition and the quantization
codebooks. We present two novel solutions to this challenging optimization
problem.

The first solution iteratively solves two simpler sub-problems. The second
solution is based on a Gaussian assumption and provides theoretical
analysis of the optimality. We evaluate our optimized product quantizers in
three applications: (1) compact encoding for exhaustive ranking, (2) building
inverted multi-indexing for non-exhaustive search, and (3) compacting
Image representations for image retrieval


https://ieeexplore.ieee.org/author/37076101400

TO DO: OPQ IMPLEMENTATION (FB)



Locally Optimized Product

Quantization
for Approximate Nearest

Neighbor Search



Overview

e Authors proposed a hew method
for clustering data

o Locally Optimized Product
Quantization (LOPQ)

e Achieves state of the art
performance on a variety of
datasets

o Centroids focus on reducing
distortion rather than increasing
coverage

-0 3.

(c) OPQ (d) LOPQ



Locally Optimized Product Quantization (LOPQ)

® |s a hierarchical quantization algorithm that produces codes of configurable length for data points.

® These codes are efficient representations of the original vector and can be used in a variety of ways

depending on application, including as hashes that preserve locality, as a compressed vector from
which an approximate vector in the data space can be reconstructed, and as a representation from
which to compute an approximation of the Euclidean distance between points.

® Conceptually, the LOPQ quantization process can be broken into 4 phases. The training process also
fits these phases to the data in the same order.

https://youtu.be/RgxCaiQ-kig?t=2059



https://youtu.be/RgxCaiQ-kig?t=2059
https://youtu.be/RgxCaiQ-kig

TO DO: CONTINUE EXPLANATION

1. The raw data vector is PCA'd to D dimensions (possibly the original dimensionality). This allows subsequent
quantization to more efficiently represent the variation present in the data.

2. The PCAd data is then product quantized [2] by two k-means quantizers. This means that each vector is split
into two subvectors each of dimension D / 2, and each of the two subspaces is quantized independently with
a vocabulary of size V. Since the two quantizations occur independently, the dimensions of the vectors are
Fermuted such that the total variance in each of the two subspaces is approximately equal, which allows the
WO vocabularies to be equally important in terms of capturing the total variance of the data. This results in a
pair of cluster ids that we refer to as "coarse codes”.

3. The residuals of the data after coarse quantization are computed. The residuals are then locally projected
independently for each coarse cluster. This projection is another application of PCA and dimension .
permutation on the residuals, and it is 'local’ inthe sense that there'is a different pro%ectlon for each cluster in
each of the two coarse vocabularies. These local rotations make the next and final step, another application of
product quantization, very efficient in capturing the variance of the residuals.

4. The locally projected data is then product quantized a final time by M subquantizers, resulting in M "fine
codes’. Usually the vocabulary for each of these subquantizers will be a power of 2 for effective storage in a
stearch |g[1ﬁle>.<. 3 ith vocabularies of size 256, the fine codes for each indexed vector will require M bytes to
store in the index.



Background

e Product Quantization (PQ) is fast, but
centroids don't have supported data
e Optimized Product Quantization
(OPQ) allows for centroids to be
rotated to better fit the data model
e | OCP extends upon PQ and OPQ by
using their:
o acoarse quantizer
o a rotation matrix (from OPQ)

o product quantizers but with local
optimizations

e Quantization speeds up search
by implementing lossy
compression algorithms on data
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Discussion Questions

e \Xhy cant Product
Quantization regenerate its
original inputs?

o Example: zip files utilize
lossy compression
algorithms, why can't PQ?

o Should they be concerned
about this at all?




Efficient Large-scale
Approximate Nearest Neighbor
Search on the GPU



Overview + Results

e Creates anew data structure
off of PQ to allow for GPU
optimizations

e Performs well, but is not state
of the art in recall

e |Issignificantly faster than CPU
approximate nearest neighbor
algorithms

method ms R@] R@10 R@100 su
FLANN[!6] 5.32 0.97 - - X 9.6
LOPQ|[!!] 51.1 Q51 0.93 0.97 1
IVFADC* 11.2 0.28 0.70 0.93 x4.5
PQT,; (CPU) 489 045 0.86 0.98 x10.4
PQT, (CPU) 5.74 0098 (exactre-ranking) x8.9
PQT (GPU) 0.02 0.51 0.83 0.86 %2555
GPU brutef. 23.7 | | | %2

Table 1: Performance on the SIFTIM dataset using dif-
ferent methods. Reported query times include query + re-
ranking times. The GPU implementation uses the first 212
vectors from the proposed bins and (64 - 8)* bins. The re-
ported CPU performance is base on (8 - 4)? bins. Speedup
(su) is reported relative to the slowest method. PQTs is
PQT; but with additional exact re-ranking. (*) indicates
that the timing was reported by the authors. R@n means,
the correct vector is within the first n returned vectors from

the algorithm.



Background

e Approximate nearest neighbor
algorithms utilize CPUs and KD-Tree
data structures

e Memory restrictions with GPUs make
GPU optimizations difficult for this task

e Extends the work on Product
Quantization by introducing a new data

structure called a PQ Tree (PQT)
o Built upon a combination of an
inverted multi-index and hierarchical
PQ

@ ]
@ 000 @06 O 0., ©

g o o
s L 4 o o000 ©° ofe "o
0@00 (Y 0’0000 6°0, o
A o G6F.0 0 o o
a) Vector Quantization b) Product Quantization
o
0 00 0 8. ®©
o® —
g _ o
9600 © _'0 & o
8=
mE o = B8 8om 38
emoo ©¢ © ©
¢) Hierarchical Subspace d) Product Quantization Tree

Clustering

Figure 1: Three different quantization schemes with k£ =
32 clusters. Vector Quantization (a) represents vectors by
their closest centroids. Product Quantization performs the
clustering in subspaces (here axes) (b). A tree structure can
be used to build a hierarchy of clusters on each axis (c).
Our method use the hierarchy of two quantization levels,
first using PQ with a low number of centroids, and then a
second-layer of PQ within these bins (d). Points drawn as
m are PQ centroids, and each corresponding cluster is split
again into finer 4 clusters (2 on each axis) with centroids
illustrated as o .



Discussion Questions

e \Xhat did you think of the paper
holistically?

e T[he authors created a new data
structure to solve this problem using
GPUs. Could this be done on CPUs
for similar performance?

e Theirresults weren't state of the art
for recall, thus raising the question
that aside from speed, why bother
utilizing this method for the
purposes of Image Retrieval?




Fast Local Spatial Verification
for Feature-Agnostic
Large-Scale Image Retrieval



Overview

e Adapt image retrieval to

composite images to
determine what composited
iImages make up a scene
Proposed Objects in Scene to
Objects in Scene (0S20S)
score

A method of Content Based
Image Recognition

Fig. 1. An example of a meme-style image from the r/photoshopbattles
subreddil. Internel memes are humorous messages hal are spread on social
media, often conforming to a set genre with a distinct style. In this paper,
we provide spatial verification to find object-level correspondences between
images, which assist in retrieving the donor images (highlighted in yellow)
that contribute to composites like the one above.



Background

e Current approximate nearest neighbor
algorithms utilize local and global features +
quantization

o SIFT,SURF, LIFT, and DELF

o OPQ, Generalized Product Quantization +
Inverted File Indices

e Region Based Image Retrieval
e Object Based Image Retrieval

e |mplementation involves:

@)

Spatially Constrained Similarity Measure to avoid
guerying areas of interest ahead of analysis.

A coarse Pairwise Geometric Matching to
accumulate Hough votes in bins for analysis

A two stage, O(n) solution to remove spurious
solutions

A retrieval score (0S20S) to compare the
returned image components



Vi
Ranking

C

Fig. 2.  Steps of the OS20S method. (i) Local features with associated geometric data (Le., (x, y) coordinates, scale, and rotation) are extracted from
the query. (ii) Local features, along with their associated geometric data, are collected in a database. In this hypothetical example, we associate features
for each object with separate images; however, this is not a necessary stipulation for OS20S. (iii) Query features are assigned to corresponding database
matches (represented by feature colors). (iv) For each database image sharing matches with the query, a feature centroid is computed, considering only the
maltched features. (v) Keypoint geometric transformations are calculated relative to the estimated centroids. (vi) Geometric transformations are applied to the

database features clustered in the query (x, y) space. (vii) As each cluster represents a potentially shared object, image ranking scores are calculated on an
object-by-object basis.
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Results - ~osure
0.2 P Total Recall DSURF+0S20S
= = = Donor Recall :DELF
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e Implementing OS20S in existing CBIR Rank

algorlthms INncreases the Overa” performance Fig. 6. Recall scores for the NIST MFC2018 dataset for ranks of 25, 50,

. 100, and 200 images. Total recall is represented by solid lines, while small-

Of the a|80r|thm5 donor-only recall is represented by dashed lines. OS20S scoring improves

. . . retrieval in all scenarios.
O
(b)SZC(;S czénplije;mpljmlent§c:]e|thercin CIIIDU TABLE 1II
ase. or as€ a. gorithms and sti RECALL SCORES FOR THE Reddit DATASET AT THE Top-50, 100, AND
prOV|de performance |mprovements 200 MOST RELATED RETRIEVED IMAGES. OS20S SPATIAL VERIFICA-
TION IMPROVES THE RESULTS IN ALL SCENARIOS. THE BOTTOM
TWO ROWS DENOTE RESULTS USING OUR OS20S APPROACH

Method R@50 R@ 100 R@200
DSURF 0.317 0.432 0.478
DELF 0.402 0.516 0.551
DSURF + HPM 0.351 0.358 0.437
DSURF + PGM 0.327 0.398 0.442
DSURF + VaV 0.310 0.423 0.479
DSURF + 0OS20S8 0424 0.509 .546

DELF + OS208 0.479 0.548 0.593




Discussion Questions

e Would OS20S work well with composite

images of composite images?
o Does this solution fail to provide performance
benefits with respect to recursion?
e |sthiswork limited by the amount of data that
was able to be searched through?
o Inother words, would more data = better
performance?




Latent Variables in Computer
Vision



Understanding latent space

® \X/hat is latent space?

O If you must describe latent space in one sentence, it simply means a representation of compressed
data.

O The concept of “latent space” is important because its utility is at the core of ‘deep learning' — learning
the features of data and simplifying data representations for the purpose of finding patterns.

Input image Reconstructed image

& - Latent Space L
' 2 Representation o

Encoder Bottleneck Decoder



A latent space or vector is basically a distribution of the latent variables above. It is also
commonly referred to as a feature representation.

Think of a latent vector as a collection of an image's 'features!, l.e. variables that describe
what is going on in an image, such as the setting (medieval or modern), the time of day, and
so on. This is not exactly how it works - it is just an intuition. The idea is that the latent
variables represent high level attributes, rather than raw pixels with little meaning.

Latent variables can be used when connecting computer vision models to models from
other domains that do not deal with image data. For example, a common task in natural
language processing is image captioning. To generate a caption for an image, an NLP model
would require the image's latent variables. That is where they get the understanding
necessary to describe what is going on in the image.

Latent SPQQQ

_
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D Leamnin Features
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How is data simplified?

® \Why do we compress data in ML?
® Data is compressed in machine learning to learn important information about data points

® Say we would like to train a model to classify an image using a fully convolutional neural
network (FCN). (i.e., output digit number given image of digit). As the model ‘learns, it is simply
learning features at each layer (edges, angles, etc.) and attributing a combination of features to
a specific output.



Data compression

® But each time the model learns through a data point, the dimensionality of the image is

first reduced before it is ultimately increased. When the dimensionality is reduced, we
consider this a form of lossy compression.

® Because the model is required to then reconstruct the compressed data, it must learn to

store all relevant information and disregard the noise. This is the value of compression- it
allows us to get rid of any extraneous information, and only focus on the most important
features.

® This ‘compressed state' is the Latent Space Representation of our data.

r 2

Original Data

Compressed Data




Compressed Data =

Space?
. . oL , (1 05 08 02 07]
e |n this rather simplistic example, let's say our 02 011 0.78 0.3 0.2
original dataset are images with dimensions 5 1 001 0 09 0.56
X 5 X 1. We will set our latent space 11 1 1 0
dimensions to be 3 x 1, meaning our |1 04 02 01 0.01
compressed data point is a vector with Example 5x5x1 data

3-dimensions.

e Now, each compressed data point is
uniquely defined by only 3 numbers. That :;i
means we can graph this data on a 3D Plane 0.8
(One number is x, the othery, the other 2).

Example compressed 3x1data in ‘latent space’



® This is the “space’ that we are
referring to.

® \Whenever we graph points or think

of points in latent space, we can
imagine them as coordinates in
space in which points that

are "similar” are closer together on
the graph.

Point (0.4, 0.3, 0.8) graphed in 3D space



What defines ‘'similarity’
between points?

Two chairs and a desk.

e If we look at three images, two of a chair and one of a desk, we will
easily say that the two chair images are the most similar whereas the
desk’is the most different from either of the chair images.

e But what makes these two chair images "more similar?” A chair
has distinguishable features (i.e., back-rest, no drawer, connections
between [egs). These can all be ‘understood’ by our models by
learning patterns in edges, angles, etc.

e As explained, such features are packaged in the latent space
representation of data.



e Thus, as dimensionality is
reduced, the ‘extraneous
information which is distinct
to each image (i.e,. chair
color) is ‘removed from our
latent space representation,
since only the
most important features of
each image are stored in the
latent space representations.

e As aresult, as we reduce
dimensionality, the _
representations of both chairs
become less distinct and
more similar. If we were to
|magﬂ|ne them in space, they
would be ‘closer' together.




® Generally, any two similar images will lie closer to each other in the latent space

whereas dissimilar images will lie far away. This is the basic governing rule with
which we will train our model.

® Once we do this, the retrieval part simply scours the latent space to pick up the

closest image in the latent space given the representation of the query image.
Most of the time, it is done with the help of nearest neighbor search.
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