
COMP 388-002/488-002 Computer Science Topics

Daniel Moreira 
Fall 2022

Computer Vision 
Applications



COMP 388-002/488-002 Computer Science Topics 
Computer Vision Applications

Daniel Moreira 
Fall 2022

Image Description



Today you will…

3

Get to know global and local 
image description.



Why do We Need Image Description?
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Can a computer system 
decide if these images 
depict the same building?



Why do We Need Image Description?
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Can a computer system 
decide if these images 
depict the same building? 
 
 
Yes, but not directly 
based on the pixel values.

capture 
position

date and 
time device Pixel values depend on complex 

settings.



Semantic Gap
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TaskLevel 0

?



Semantic Gap
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TaskLevel 0 Level 1 Level 2 Level 3

Problem Domain Specialization



Semantic Gap
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TaskLevel 0 Level 1 Level 2 Level 3



Global Features
The entire image is represented by a single tensor. 
 
Example: Color Histogram 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Feature Vector

other colors…

Histogram



Global Features
The entire image is represented by a single tensor. 
 
Example: Color Histogram 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query

database similar images

https://w
w

w.pantechsolutions.net/m
atlab-

code-for-im
age-retrieval

0.7 0.6 0.1 0.3 0.2 0.0 0.0 0.0



Global Features
The entire image is represented by a single tensor. 
 
Example: Color Histogram 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query
0.7 0.6 0.1 0.3 0.2 0.0 0.0 0.0

Cons 
 
No distinction between 
foreground and 
background.



Global Features
The entire image is represented by a single tensor. 
 
Example: Color Histogram 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query
0.7 0.6 0.1 0.3 0.2 0.0 0.0 0.0

Cons 
 
No semantics.



Global Features
The entire image is represented by a single tensor. 
 
Example: Color Histogram 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Cons 
 
No semantics. 
 
Not robust to occlusions.

A lot of dark green. A lot of white. No match.



Global Features
The entire image is represented by a single tensor. 
 
Example: CNN-based 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ResNet-50



Global Features
The entire image is represented by a single tensor. 
 
Example: CNN-based 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ResNet-50

…

1024D

Pros 
 
Inherited 
semantic 
awareness.



Global Features
The entire image is represented by a single tensor. 
 
Example: CNN-based 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Pros 
 
Inherited 
semantic 
awareness.

query database semantically similar images



Global Features
The entire image is represented by a single tensor. 
 
Example: CNN-based 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Cons 
 
Can it help to decide if these 
images depict the same 
building?

A lot of occlusion.



Global Features
The entire image is represented by a single tensor. 
 
Example: CNN-based 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Cons 
 
Can it help to decide if these 
images depict the same 
building?

A lot of occlusion. Unnecessary regions.



What are Local Features? 
Image patterns that differ from their immediate neighborhood.

Local Features
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What are Local Features? 
Image patterns that differ from their immediate neighborhood.

Local Features
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What are Local Features? 
Image patterns that differ from their immediate neighborhood. 
 
Possible targets: points, edges, corners, junctions, blobs, etc.

Local Features

21



Why should one use Local Features? 
Relevance 
(i) Edges are usually enough for humans’ object recognition. 
(ii) Removing the corners hinders humans’ abilities.

Local Features
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craiyon.com



Why should one use Local Features? 
Establish anchor points for image registration.

Local Features
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Why should one use Local Features? 
Establish anchor points for image registration.

Local Features
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pyimagesearch.com



Why should one use Local Features? 
Obtain robust and compact image representation for many CV tasks.

Local Features

25

Can a computer system 
decide if these images 
depict the same building?



Why should one use Local Features? 
Obtain robust and compact image representation for many CV tasks.

Local Features

26

Can a computer system 
decide if these images 
depict the same building?



Why should one use Local Features? 
Obtain robust and compact image representation for many CV tasks.

Local Features
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Can a computer system 
decide if these images 
depict the same building?

Yes_

In spite of occlusions.



Why should one use Local Features? 
Obtain robust and compact image representation for many CV tasks.

Local Features
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Can a computer system 
decide if these images 
depict the same building?

Yes_

Index the local features 
instead of the entire images.



Local Features
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Local Feature Steps 
 
 
Feature Detection 
Interest points, keypoints, or 
regions of interest are identified 
within the image. 
 
Desired elements: location (x, y), 
scale, orientation, strength. 
 
Desired properties: repeatability and 
distinctiveness.



Local Features
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Local Feature Steps 
 
 
Feature Description 
Tensors are computed over 
the regions of the detected 
local features. 
 
Desired element: N-Dimensional 
feature vector. 
  
Desired properties: efficiency and 
robustness to different capture 
conditions.



Harris Corner Detector
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Focus on Corners

Image 1 Image 2

?
?

?



Harris Corner Detector
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Focus on Corners

Image 1 Image 2

!

Corners are easier to 
find and match.



Harris Corner Detector
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Focus on Corners

Consider a small -pixel window  around 
each pixel  of a target image . 
 
Which of the windows depict corners?

(n × n) w(x, y)
I(x, y) I



Harris Corner Detector
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Focus on Corners

Consider a small -pixel window  around 
each pixel  of a target image . 
 
For each window, consider the image gradients: 
 

- In  direction: 

(n × n) w(x, y)
I(x, y) I

x Ix =
δI
δx

- In  direction: y Iy =
δI
δy



Harris Corner Detector
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Image 
Gradients

Image

Flat
Edge 

(vertical) Corner



Harris Corner Detector
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Image 
Gradients

Image

Ix

Flat
Edge 

(vertical) Corner
Possible 

Implementation

Image convolution with 

Sobel filter [
1 0 −1
2 0 −2
1 0 −1]



Harris Corner Detector
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Image 
Gradients

Image

Ix

Iy

Flat
Edge 

(vertical) Corner
Possible 

Implementation

Image convolution with 

Sobel filter [
1 0 −1
2 0 −2
1 0 −1]

Image convolution with 

Sobel filter [
1 2 1
0 0 0

−1 −2 −1]

Both  and  
should be large.

Ix Iy



Harris Corner Detector
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Image 
Gradients

Image Ix Iy



Harris Corner Detector
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Focus on Corners

Consider a small -pixel window  around 
each pixel  of a target image . 
 
For each window, compute the structure tensor: 
 

(n × n) w(x, y)
I(x, y) I

M = ∑
x,y

w(x, y)[
IxIx IxIy

IxIy IyIy] =
∑x,y w(x, y)I2

x ∑x,y w(x, y)IxIy

∑x,y w(x, y)IxIy ∑x,y w(x, y)I2
y



Harris Corner Detector
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Structure Tensor 
(a.k.a. second-moment matrix)

M =
∑x,y w(x, y)I2

x ∑x,y w(x, y)IxIy

∑x,y w(x, y)IxIy ∑x,y w(x, y)I2
y

According to linear algebra principles, 
the eigenvalues  and  of  
express the spread of image gradient 
values in two different directions. 
 
We want both values large, since two 
different directions define what a 
corner is.

λ1 λ2 M



Harris Corner Detector
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Structure Tensor 
(a.k.a. second-moment matrix)

 

 
Eigenvalues:  and 

M =
∑x,y w(x, y)I2

x ∑x,y w(x, y)IxIy

∑x,y w(x, y)IxIy ∑x,y w(x, y)I2
y

λ1 λ2

λ1

λ2

Flat
Edge 

(vertical)

Corner
Edge 

(horizontal)

λ1 ≫ λ2

λ1 ≪ λ2

λ1 ≈ λ2



Harris Corner Detector
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Structure Tensor 
(a.k.a. second-moment matrix)

 

 
Eigenvalues:  and  
 
Harris and Stephens’ idea 
Leverage the following properties: 

 and 

M =
∑x,y w(x, y)I2

x ∑x,y w(x, y)IxIy

∑x,y w(x, y)IxIy ∑x,y w(x, y)I2
y

λ1 λ2

det(M) = λ1λ2 trace(M) = λ1 + λ2

λ1

λ2

Flat
Edge 

(vertical)

Corner
Edge 

(horizontal)

λ1 ≫ λ2

λ1 ≪ λ2

λ1 ≈ λ2



Harris Corner Detector
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Structure Tensor 
(a.k.a. second-moment matrix)

 

 
Eigenvalues:  and 

M =
∑x,y w(x, y)I2

x ∑x,y w(x, y)IxIy

∑x,y w(x, y)IxIy ∑x,y w(x, y)I2
y

λ1 λ2

“Cornerness” Score  
No need to compute  and  explicitly 
but leverage: 

 and  
 

 

R
λ1 λ2

det(M) = λ1λ2 trace(M) = λ1 + λ2

R = det(M) − k(trace(M))2



Harris Corner Detector
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Structure Tensor 
(a.k.a. second-moment matrix)

M =
∑x,y w(x, y)I2

x ∑x,y w(x, y)IxIy

∑x,y w(x, y)IxIy ∑x,y w(x, y)I2
y

“Cornerness” Score  
No need to compute  and  explicitly 
but leverage: 

 and  
 

 

R
λ1 λ2

det(M) = λ1λ2 trace(M) = λ1 + λ2

R = det(M) − k(trace(M))2

Handcrafted value: 
k = 0.04

: we have a corner! (  and  are both large) 

: we have an edge, so ignore. (  or vice versa) 
: we have a flat region, so ignore.

R ≫ 0 λ1 λ2

R < 0 λ1 ≫ λ2
|R | ≈ 0



Harris Corner Detector
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Example 

https://bit.ly/3qRBt2U



Scale Invariant Feature Transform (SIFT)
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Image 1 Image 2

How to match the same content captured 
with different resolutions?



Scale Invariant Feature Transform (SIFT)
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Image 1 Image 2

How to match the same content captured 
with different resolutions?



Scale Invariant Feature Transform (SIFT)
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Image 1 Image 2

How to match the same content captured 
with different resolutions?



Scale Invariant Feature Transform (SIFT)
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Image 1 Image 2

How to match the same content captured with tilt?



Scale Invariant Feature Transform (SIFT)

50

Keypoint Detection

Keypoint 
Description

…
…

… 128D feature vectors



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection

Keypoint 
Description

…
…

… 128D feature vectors



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
How to detect interest points (a.k.a. keypoints) in an image? 
 
Previous Literature  
To focus on blobs: 
1. Apply Gaussian to remove noise (blur). 
2. Apply Laplacian to detect good regions. 
 
Good regions will have high values after convolution. 
This is known as Laplacian of Gaussian (LoG).



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
How to detect interest points (a.k.a. keypoints) in an image? 
 
Lowe’s ideas  
Approximate LoG by a Difference of Gaussians (DoG).



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
How to detect interest points (a.k.a. keypoints) in an image? 
 
Lowe’s ideas  
Approximate LoG by a Difference of Gaussians (DoG). 
 
The two subtracted Gaussians come from 
distinct variances (scales). 

https://medium.com/@vad710/cv-for-busy-devs-
improving-features-df20c3aa5887



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
Scale Invariance 
 
Process the image of interest 
at different scales. 
 
This is called resolution pyramid.

1st octave

2nd octave

3rd octave
4th octave

1st octave

2nd octave

3rd octave
4th octave

images

DoG

https://faculty.cc.gatech.edu/~afb/classes/CS4495-
Fall2013/slides/CS4495-11-Features2.pdf



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
Scale Invariance 
 
Process the image of interest 
at different scales.

Lowe’s



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
Non-maximal Suppression 
 
Good SIFT keypoints present the highest 
DoG value among their immediate (3 x 3 x 3) 
scale-space neighborhood.  
 

Lowe’s



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection 
Non-maximal Suppression 
 
Good SIFT keypoints present the highest 
DoG value among their immediate (3 x 3 x 3) 
scale-space neighborhood.  
 
Local scale-space extrema have  position and 
inherit the scale from the level/octave it belongs to 
within the resolution pyramid. 

I(x, y)

Lowe’s



Keypoint Detection 
Orientation Assignment 
 
To become robust to tilt (rotation), 
compute the gradient angle for all the pixels 
within the keypoint neighborhood 
considering its scale.

Scale Invariant Feature Transform (SIFT)

59



Keypoint Detection 
Orientation Assignment 
 
To become robust to tilt (rotation), 
compute the gradient angle for all the pixels 
within the keypoint neighborhood 
considering its scale. 
 
Create an angle histogram with 36 bins. 
Take the dominant angle as the 
keypoint orientation.

Scale Invariant Feature Transform (SIFT)
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https://medium.com/data-breach/introduction-to-sift-
scale-invariant-feature-transform-65d7f3a72d40



Keypoint Detection 
Orientation Assignment 
 
To become robust to tilt (rotation), 
compute the gradient angle for all the pixels 
within the keypoint neighborhood 
considering its scale. 
 
If other angles have at least 80% of the 
frequency of the maximum angle, 
create other keypoints with the same location 
and scale but different orientation. 

Scale Invariant Feature Transform (SIFT)

61

https://medium.com/data-breach/introduction-to-sift-
scale-invariant-feature-transform-65d7f3a72d40



Keypoint Detection 
 
SIFT keypoints have: 
1. Location (x,y) 
2. Scale (from resolution pyramid) 
3. Orientation (dominant local gradient angle) 
4. Strength (DoG value)

Scale Invariant Feature Transform (SIFT)
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https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection

Keypoint 
Description

…
…

… 128D feature vectors



Scale Invariant Feature Transform (SIFT)
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Image 1 Image 2

Keypoint Description 
 
For each keypoint, rotate the image according to the keypoint orientation.



Scale Invariant Feature Transform (SIFT)
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Keypoint Description 
 
For each rotated keypoint, sample a 4 x 4 window on its neighborhood, according to the keypoint scale.



Scale Invariant Feature Transform (SIFT)
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Keypoint Description 
 
For each rotated keypoint, sample a 4 x 4 window on its neighborhood, according to the keypoint scale. 
For each one of the 4 x 4 cells, compute a 8-bin histogram of gradient directions.



Scale Invariant Feature Transform (SIFT)
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Keypoint Description 
 
For each rotated keypoint, sample a 4 x 4 window on its neighborhood, according to the keypoint scale. 
For each one of the 4 x 4 cells, compute a 8-bin histogram of gradient directions. 
Fill out a feature vector with the 4 x 4 x 8 =128 histogram values.



Scale Invariant Feature Transform (SIFT)
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Keypoint Detection

Keypoint 
Description

…
…

… 128D feature vectors, compare two vectors with L2-distance.



Scale Invariant Feature Transform (SIFT)
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Example 

https://bit.ly/3QP3EKw



Speeded-Up Robust Features (SURF)
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2006

 
How to develop a faster alternative to SIFT?

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html



Speeded-Up Robust Features (SURF)
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2006

Stages

Faster Keypoint 
Detection

Faster Keypoint 
Description

…
…

… 64D feature vectors



Speeded-Up Robust Features (SURF)
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2006

Faster Keypoint 
Detection

Faster Keypoint 
Description

…
…

… 64D feature vectors

Stages



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Hessian Matrix 
 
Given an image pixel , a scale of interest , 

and Gaussian second order derivative functions , , and , 

the Hessian matrix  is given by: 
 

I(x, y) σ
δ2

δx2
G(σ)

δ2

δy2
G(σ)

δ2

δxy
g(σ)

H

H(x, y, σ) =
δ2

δx2 g(σ) * I(x, y) δ2

δxy g(σ) * I(x, y)

δ2

δxy g(σ) * I(x, y) δ2

δy2 g(σ) * I(x, y)



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Hessian Matrix 
 
Given an image pixel , a scale of interest , 

and Gaussian second order derivative functions , , and , 

the Hessian matrix  is given by: 
 

I(x, y) σ
δ2

δx2
G(σ)

δ2

δy2
G(σ)

δ2

δxy
g(σ)

H

H(x, y, σ) =
δ2

δx2 g(σ) * I(x, y) δ2

δxy g(σ) * I(x, y)

δ2

δxy g(σ) * I(x, y) δ2

δy2 g(σ) * I(x, y)

Property: blobs with scale  
and centered at  will 

lead to a large .

σ
I(x, y)
det(H)

Take the regions with large  
as candidate keypoints.

det(H)



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Integral Image 
 
Data structure  computed from a given image  that shares the same resolution 
(i.e., same number of rows and of columns). 
 
Each “pixel” of  has the following value: 
 

 

 
i.e., it holds the sum of all the pixel values of  
that spatially precede the position .

I∑ I

I∑

I∑(x, y) =
x

∑
i=0

y

∑
j=0

I(i, j)

I
(x, y)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)

76

A B

C D

(0,0)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)

77

A B

C D

Sum of region between (0,0) and A? 
Answer:  
 
Sum of region between (0,0) and B? 
Answer -  
 
Sum of region between (0,0) and C? 
Answer -  
 
Sum of region between (0,0) and D? 
Answer - 

I∑(A)

I∑(B)

I∑(C)

I∑(D)

(0,0)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)
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A B

C D

Sum of region between (0,0) and A? 
Answer:  
 
Sum of region between (0,0) and B? 
Answer:  
 
Sum of region between (0,0) and C? 
Answer -  
 
Sum of region between (0,0) and D? 
Answer - 

I∑(A)

I∑(B)

I∑(C)

I∑(D)

(0,0)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)
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A B

C D

Sum of region between (0,0) and A? 
Answer:  
 
Sum of region between (0,0) and B? 
Answer:  
 
Sum of region between (0,0) and C? 
Answer:  
 
Sum of region between (0,0) and D? 
Answer - 

I∑(A)

I∑(B)

I∑(C)

I∑(D)

(0,0)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)
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A B

C D

Sum of region between (0,0) and A? 
Answer:  
 
Sum of region between (0,0) and B? 
Answer:  
 
Sum of region between (0,0) and C? 
Answer:  
 
Sum of region between (0,0) and D? 
Answer: 

I∑(A)

I∑(B)

I∑(C)

I∑(D)

(0,0)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)
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A B

C D

Sum of region between A and D? 
 
Answer: 




One can get any sum with at most 
4 accesses, regardless of the 
resolution.


I∑(D) − I∑(B) − I∑(C) + I∑(A)

(0,0)



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)

82

Box Filters can be easily 
convoluted with the integral 
image.


(0,0)

One can quickly test a 
horizontal edge here 

(8 accesses) 



Faster Keypoint Detection 
Integral Image 
 
What is the utility? 
 
It is easy to compute 
the sum of pixel values 
within any region regardless 
of the region size.

Speeded-Up Robust Features (SURF)
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Box Filters can be easily 
convoluted with the integral 
image.


(0,0)

One can quickly test a larger 
scale horizontal edge here 

(still 8 accesses) 



Speeded-Up Robust Features (SURF)

84

Faster Keypoint Detection 
Box Filters 
 

The Gaussian second order derivative functions , , and  

can be approximated by box filters.

δ2

δx2
G(σ)

δ2

δy2
G(σ)

δ2

δxy
g(σ)

δ2

δy2
G(σ)

δ2

δxy
g(σ)

Bay’s



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Box Filters 
 

The Gaussian second order derivative functions , , and  

can be approximated by box filters. 
 
Compute the  quickly by using the 
box filters and the integral image! 
 

δ2

δx2
G(σ)

δ2

δy2
G(σ)

δ2

δxy
g(σ)

det(H)

H(x, y, σ) =
δ2

δx2 g(σ) * I(x, y) δ2

δxy g(σ) * I(x, y)

δ2

δxy g(σ) * I(x, y) δ2

δy2 g(σ) * I(x, y)

δ2

δy2
G(σ)

δ2

δxy
g(σ)

Bay’s



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Scale Invariance 
 
How to obtain scale invariance? 
 
From SIFT: Use resolution pyramid.

https://medium.com/@deepanshut041/introduction-to-
surf-speeded-up-robust-features-c7396d6e7c4e

https://faculty.cc.gatech.edu/~afb/classes/CS4495-
Fall2013/slides/CS4495-11-Features2.pdf



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Scale Invariance 
 
How to obtain scale invariance? 
 
From SIFT: Use resolution pyramid. 
 
But instead of reducing the images, 
reduce the box filters! 
 

https://medium.com/@deepanshut041/introduction-to-
surf-speeded-up-robust-features-c7396d6e7c4e

https://faculty.cc.gatech.edu/~afb/classes/CS4495-
Fall2013/slides/CS4495-11-Features2.pdf



Speeded-Up Robust Features (SURF)
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Faster Keypoint Detection 
Non-maximal Suppression 
 
Good SURF keypoints present the highest 

 values among their immediate (3 x 3 x 3) 
scale-space neighborhood.  
 

det(H)

Lowe’s



 
Faster Keypoint Detection 
Orientation Assignment 
 
Compute the gradient angle for all the pixels 
within the keypoint neighborhood 
considering its scale  (from the Hessian matrix). σ

Speeded-Up Robust Features (SURF)

89



 
Faster Keypoint Detection 
Orientation Assignment 
 
Compute the gradient angle for all the pixels 
within the keypoint neighborhood 
considering its scale  (from the Hessian matrix). 
 
Use box filters  and  with scale proportional to .

σ

dx dy σ

Speeded-Up Robust Features (SURF)
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dx dy



 
Faster Keypoint Detection 
Orientation Assignment 
 
Compute the gradient angle for all the pixels 
within the keypoint neighborhood 
considering its scale  (from the Hessian matrix). 
 
Use box filters  and  with scale proportional to . 
 
Create an angle histogram with 6 bins. 
Take the dominant angle as the 
keypoint orientation.

σ

dx dy σ

Speeded-Up Robust Features (SURF)
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dx dy

https://m
edium

.com
/@

deepanshut041/
introduction-to-surf-speeded-up-robust-features-
c7396d6e7c4e



Faster Keypoint Detection 
 
SURF keypoints have: 
1. Location (x,y) 
2. Scale (  from Hessian matrix) 
3. Orientation (dominant local gradient angle) 
4. Strength ( )

σ

det(H)

Speeded-Up Robust Features (SURF)
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https://docs.opencv.org/3.4/df/dd2/tutorial_py_surf_intro.html



Speeded-Up Robust Features (SURF)
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2006

Faster Keypoint 
Detection

Faster Keypoint 
Description

…
…

… 64D feature vectors

Stages



Speeded-Up Robust Features (SURF)

94

Image 1 Image 2

Faster Keypoint Description 
 
For each keypoint, rotate the image according to the keypoint orientation.



Speeded-Up Robust Features (SURF)
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Faster Keypoint Description 
 
For each rotated keypoint, sample a 4 x 4 window on its neighborhood, according to the keypoint scale. 



Speeded-Up Robust Features (SURF)
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Faster Keypoint Description 
 
For each rotated keypoint, sample a 4 x 4 window on its neighborhood, according to the keypoint scale. 
 
For each one of the 4 x 4 cells, compute 4 sums: 
(1) , (2) , (3) , and (4) . ∑ dx ∑ |dx | ∑ dy ∑ |dy |

dx dy



Speeded-Up Robust Features (SURF)
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Faster Keypoint Description 
 
For each rotated keypoint, sample a 4 x 4 window on its neighborhood, according to the keypoint scale. 
 
For each one of the 4 x 4 cells, compute 4 sums: 
(1) , (2) , (3) , and (4) . 
 
Fill out a feature vector with the 4 x 4 x 4 = 64 values.

∑ dx ∑ |dx | ∑ dy ∑ |dy |

dx dy



Speeded-Up Robust Features (SURF)
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2006

Stages

Faster Keypoint 
Detection

Faster Keypoint 
Description

…
…

… 64D feature vectors, compare two vectors with L2- or cosine distance.



Example 

Speeded-Up Robust Features (SURF)
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https://bit.ly/3qOj3jx
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Stages

2016

Dense Feature 
Extraction

Keypoint Selection

Dimensionality 
Reduction

…
…

… 40D feature vectors
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Stages

2016

Dense Feature 
Extraction

Keypoint Selection

Dimensionality 
Reduction

…
…

… 40D feature vectors
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Dense Feature Extraction 
Starting Point: ResNet-50

ResNet-50
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Dense Feature Extraction 
ResNet-50 Adaptation

Notre Dame

Notre Dame

Other 
Classes

+ Fully 
Connected 

Network

Fine-tune training 
with Google- Landmark classes



Deep Local Features (DELF)
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Dense Feature Extraction 
How to convert global description to dense description?

Notre Dame

Notre Dame

Other 
Classes

Solution: receptive field analysis



Dense Feature Extraction 
Dense Descriptor

Deep Local Features (DELF)
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Landmarks

Receptive field analysis



Dense Feature Extraction 
Dense Descriptor

Deep Local Features (DELF)
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Landmarks

Receptive field analysis



Dense Feature Extraction 
Dense Descriptor

Deep Local Features (DELF)
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Landmarks

Receptive field analysis



Dense Feature Extraction 
Dense Descriptor

Deep Local Features (DELF)
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Landmarks



Dense Feature Extraction 
Dense Descriptor 
 
Logical meaning: one feature vector for each densely sampled image region.

Deep Local Features (DELF)
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Landmarks



Dense Feature Extraction 
Dense Descriptor 
 
Logical meaning: one feature vector for each densely sampled image region.

Deep Local Features (DELF)
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Landmarks



Dense Feature Extraction 
How to deal with multiple resolutions?

Deep Local Features (DELF)
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Landmarks

Solution: train with 
resolution pyramid.

Each level is presented 
independently.
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Stages

2016

Dense Feature 
Extraction

Keypoint Selection

Dimensionality 
Reduction

…
…

… 40D feature vectors



Attention-based Keypoint Selection 
How to convert dense description to keypoint selection?

Deep Local Features (DELF)
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dense feature 
vectors



Attention-based Keypoint Selection 
How to convert the dense description to keypoint selection?

Deep Local Features (DELF)
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Notre Dame

Notre 
Dame

Other 
Classes

Solution: train an 
attention network.

dense feature 
vectors

The Fully Connected Network is trained 
again but with focus on the attention 

network. ResNet-50 is left as is.



Attention-based Keypoint Selection 
How to convert the dense description to keypoint selection? 
 
 
 
 
 
 
 
 
 
 
 
 
Attention Network: Weights the dense feature vectors by 
either suppressing or inciting them. 
Rationale: only the locations helpful for classification are kept.

Deep Local Features (DELF)

115

Notre Dame

Notre 
Dame

Other 
Classes

Solution: train an 
attention network.

dense feature 
vectors



Attention-based Keypoint Selection 
How to convert the dense description to keypoint selection? 
 
 
 
 
 
 
 
 
 
 
 
 
Attention Network: Weights the dense feature vectors by 
either suppressing or inciting them. 
Rationale: only the locations helpful for classification are kept.

Deep Local Features (DELF)
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Notre Dame

dense feature 
vectors

attention 
network

selected 
keypoints
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Stages

2016

Dense Feature 
Extraction

Keypoint Selection

Dimensionality 
Reduction

…
…

… 40D feature vectors

Principal Component Analysis (PCA) to reduce the 
dimension of the feature vectors to 40D



Deep Local Features (DELF)
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Stages

Dense Feature 
Extraction

Keypoint Selection

Dimensionality 
Reduction

…
…

… 40D feature vectors

Pros 
Learning-based method 
(not handcrafted). 
 
Cons 
DELF keypoints have (x, y) position and 
response (attention network weight). 
They have neither scale nor orientation. 
 
What do you think? 
Are they scale and rotation invariant? 



What’s Up Next?

119

Usage of Feature Vectors 
Nick and Jesus will lead the discussion 
of Image Retrieval. 
 
Deadline of Assignment #2 
Tomorrow is the deadline for submitting 
assignment #2. Let’s share our thoughts 
with Nick and Jesus. 
 
Release of Assignment #3 
Topic: Image classification.

Online


