Computer Vision Applications COMP 388-002/488-002 Computer Science Topics

Letter Soup COMP 388-002/488-002 Computer Science Topics **Computer Vision Applications**

Daniel Moreira Fall 2022

Today you will...

Get an overview of CV, AI, ML, PR, SVM, CNN, DL, GPU, PCA, etc., all in favor of the upcoming seminars.

Content

Date	Topic	Leader	Assignment	Date	Topic	Leader	Assignment
08/29	Introduction to CV	Instructor	N.A.	10/17	Object Detection	TBD <i>(students)</i>	A06, due on 10/25
09/05	<i>Labor Day</i>	N.A.	A01, due on 09/13	10/24	Image Segmentation	TBD (students)	A07, due on 11/01
09/12	Letter Soup: AI, ML, NN, and DL	Instructor	A02, due on 09/20	10/31	Face Detection	TBD (students)	A08, due on 11/08
09/19	Local and Global Descriptors	Instructor	A03, due on 09/27	11/07	Face Verification	TBD <i>(students)</i>	A09, due on 11/15
09/26	CBIR and Indexing	TBD <i>(students)</i>	A04, due on 10/04	11/14	GANs and Generative DL	TBD <i>(students)</i>	A10, due on 11/29
10/03	Image Classification	TBD <i>(students)</i>	A05, due on 10/18	11/21	Deep and Cheap Fakes	Instructor	N.A.
10/10	Fall Break	N.A.	N.A.	11/28	Sensitive Media Analysis	Instructor	N.A.
				12/05	Provenance Analysis	TBD (students)	N.A.
				12/12	Final Exam	N.A.	N.A.

Course Overview

Content

Date	Topic	Leader	Assignment	Date	Topic	Leader	Assignment
08/29	Introduction to CV	Instructor	N.A.	10/17	Object Detection	TBD <i>(students)</i>	A06, due on 10/25
09/05	<i>Labor Day</i>	N.A.	A01, due on 09/13	10/24	Image Segmentation	TBD (students)	A07, due on 11/01
09/12	Letter Soup: AI, ML, NN, and DL	Instructor	A02, due on 09/20	10/31	Face Detection	TBD <i>(students)</i>	A08, due on 11/08
09/19	Local and Global Descriptors	Instructor	A03, due on 09/27	11/07	Face Verification	TBD (students)	A09, due on 11/15
09/26	CBIR and Indexing	TBD <i>(students)</i>	A04, due on 10/04	11/14	GANs and Generative DL	TBD (students)	A10, due on 11/29
10/03	Image Classification	TBD <i>(students)</i>	A05, due on 10/18	11/21	Deep and Cheap Fakes	Instructor	N.A.
10/10	Fall Break	N.A.	N.A.	11/28	Sensitive Media Analysis	Instructor	N.A.
				12/05	Provenance Analysis	TBD (students)	N.A.
Ľ,	₩ National State State National State		12/12	Final Exam	N.A.	N.A.	

Please answer the form at: https://forms.gle/wsNjWG3MDiZPsEzA9

Course Overview

Computer Vision (CV)

Face recognition Reverse imaging generating synthetic visuals Deep Fake multimodal (ie: text->img) understand different computer present VQA Processing images formats Product

Computer Science Subfield

It aims at developing computer systems that mimic the human visual system.

Reference

Objective

Computer Vision (CV)

Computer Vision (CV)

Level 0

Semantic Gap

Task

Then

Computer Vision (CV)

Now

Level 0

Deep Learning Machine Learning? Artificial Intelligence?

Task

What comes to your mind?

https://bit.ly/3QFaq5G

Computer Science PoV

It aims at developing computer systems that mimic (or overcome) humans' intelligence (or other living entities').

Humans

Humans (ref.)

- Perceiving Memorizing
- Reasoning
 - Learning
- Inventing

Specialized Systems

- Reasoning
- Reasoning

Humans (ref.)

- Perceiving Acting Memorizing Reasoning Learning Inventing

General-purpose Systems

- Reasoning

Perceiving	
Acting	
Memorizing	
Reasoning	
Learning	
Inventing	

Humans (ref.)

Perceiving Acting Memorizing Reasoning Learning Inventing

Weak Al

Strong Al

- Reasoning
- Reasoning

Perceiving Acting Memorizing Reasoning Learning Inventing

Humans (ref.)

Perceiving Acting Memorizing Reasoning Learning Inventing

LOYOLA UNIVERSITY CHICAGO

Strong Al

Reasoning

- Reasoning

Humans (ref.)

Perceiving Acting Memorizing Reasoning Learning Inventing

Symbolic Logic

Fuzzy Logic

Semantic Networks Evolutionary Models Swarm Intelligence Machine Learning

Symbolic Logic Fuzzy Logic Semantic Networks **Evolutionary Models** Swarm Intelligence Ne are herei Machine Learning

What comes to your mind?

https://bit.ly/3xbkegQ

Machine Learning (ML)

It is Al

More Specifically

It aims at developing computer systems that mimic the learning-ability of humans.

In Practice

Leverage data examples to improve the performance on a target task.

It aims at developing computer systems that mimic humans' intelligence.

It is data-driven.

ML and Pattern Recognition (PR) Same field.

Cluster or label data.

ML Computer Science

Buineering

PR

Find patterns on data.

What data (structure) are we typically talking about?

Example problem: fish classification

Sea Bass or Salmon?

What data (structure) are we typically talking about?

Example problem: fish classification

Sea Bass or Salmon?

Fish

- length: float
- weight: float
- width: float
- fin_count: int

Length	Weight
1.12	14.11
0.95	11.22
1.08	12.02
1.45	45.03
1.09	31.01
1.08	11.09
1.51	46.00

Width	Fin
0.31	3.0
0.28	3.0
0.31	3.0
0.37	2.0
0.38	2.0
0.29	2.0
0.37	2.0

What data (structure) are we typically talking about?

Example problem: fish classification

Sea Bass or Salmon?

Fish

- length: float
- weight: float
- width: float
- fin_count: int

Length	Weight
1.12	14.11
0.95	11.22
1.08	12.02
1.45	45.03
1.09	31.01
1.08	11.09
1.51	46.00

What data (structure) are we typically talking about?

0-order: Scalar

1st-order tensor: **Vector** *(feature vectors)*

2nd-order tensor: Matrix *(images)*

Each data sample is a **Tensor**.

Feature Vector

What data (structure) are we typically talking about?

 \Re^n space

Each data sample is a **Tensor**.

Feature Vector

1

ML Stages

Machine Learning (ML)

ML Stages

Machine Learning (ML)

Metrics - How to measure the performance of the model?

Actual versus Predicted Labels

Actual (a.k.a. ground truth)

salmon

sea bass

Metrics - How to measure the performance of the model?

Metrics

Machine Learning (ML)

Accuracy (Acc)

Correct Predictions Acc =**Total Predictions**

Metrics

Example model: everything is salmon!

Machine Learning (ML)

Accuracy (Acc)

Correct Predictions Acc =**Total Predictions**

Limitation: what happens when we have unbalanced data?

Metrics

Example model: everything is salmon!

Machine Learning (ML)

Balanced Accuracy (BAcc)

$$BAcc = \frac{1}{C} \sum_{i=1}^{C} \frac{Correct \ Predictions_i}{Total \ Predictions_i}$$

C is the number of classes.

Average of class-wise accuracy.

i=salmon

Machine Learning (ML)

Precision (P) and Recall (R)

How precise is the model when it classifies as *i*? (focus on prediction)

$$\sum_{i=1}^{C} TP_i$$
$$\sum_{i=1}^{C} (TP_i + FN_i)$$

How good is the model in retrieving samples from class *i*? (focus on ground truth)

C is the number of classes.

R =

i=salmon

Machine Learning (ML)

Fscore

$$F_{\beta} = \frac{(\beta^2 + 1) \times P \times R}{\beta^2 \times P + R}$$

Harmonic mean of P and R (when we care about both).

 $F_1score: \beta = 1$, equal weight to P and to R. $F_2 score$: $\beta = 2$, more weight to R.

Question: can you think of an application where R is more important than P?

i=salmon

Machine Learning (ML)

Fscore

$$F_{\beta} = \frac{(\beta^2 + 1) \times P \times R}{\beta^2 \times P + R}$$

Harmonic mean of P and R (when we care about both).

 $F_1score: \beta = 1$, equal weight to P and to R.

 $F_2 score$: $\beta = 2$, more weight to R.

 $F_{0.5}score: \beta = 0.5$, more weight to P.

Ground truth

Machine Learning (ML)

Confusion Matrix

Visualization tool: what can you see?

Why is it called **confusion** matrix?

••••••Number of samples.

Data-driven Learning Issues What happens in face of unseen data (normal system operation)?

Under-fitting (too-simple model)

Over-fitting (too-complex model) Duda, O., Hart, P, and Stork, D. Pattern Classification. Book, 2nd ed.

Okay-ish

How to estimate the model's performance in face of unseen data?

How to estimate the model's performance in face of unseen data?

Alternative rand. split X % Y % 100-(X+Y)%

Random Data Split

What if the estimated performance (P) is a matter of chance?

K-fold Cross Validation

Example: K=5, 5 random splits.

Report μ_P and σ_P .

Random Data Split

What if the estimated performance (P) is a matter of chance?

K-fold Cross Validation

Example: K=5, 5 random splits.

Report μ_P and σ_P .

Public Random Split

No time to train the solution K times?

Make random split publicly available, so others can:

1. Reproduce your results.

2. Use the same split to train and compare their solutions.

https://www.displayr.com/ what-is-reproducible-research/

Data-driven Learning Types

Supervised Learning (1/2)

The target problem has well-defined classes.

There are annotated data to train the learner.

Annotation: each sample (feature vector) has a class.

Machine Learning (ML)

Yao, L., Miller, J. Tiny ImageNet with CNNs. CS Stanford, 2015.

Data-driven Learning Types

Supervised Learning (1/2) Closed Set versus Open Set

Face Recognition 0 Ш

query

Machine Learning (ML)

Closed Set versus Open Set

Query (Liam Hemsworth)

Dataset

Robert Downey Jr.

Scarlet Johansson

Mark Ruffalo

Chris Hemsworth

Machine Learning (ML)

Feature Space

Chris **Evans**

Jeremy Renner

Closed Set

Output This is Chris Hemsworth!

Open Set

Output don't know this person!

UNIVERSITY CHICAGO

Data-driven Learning Types

Unsupervised Learning (2/2)

Either the target problem has no well-defined classes.

OR

There are not annotated data to train the learner.

Machine Learning (ML)

Learner and Model Solutions

What solutions of Learner can we use?

Unsupervised

Clustering methods such as k-means, k-medoids, etc.

Machine Learning (ML)

Supervised

Decision trees, random forests, Support Vector Machines (SVM), typical Neural Networks (NN), etc.

K-Means

How to reduce data complexity?

Cluster the features and limit the k-nearest search to one or a couple of clusters.

There will be less elements to consider.

Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

1.0

× .

K-Means

How to reduce data complexity?

Cluster the features and limit the k-nearest search to one or a couple of clusters.

There will be less elements to consider.

> Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

.

Select K random features as cluster centers.

Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

K-Means

Assign features to the closest cluster centers.

Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

K-Means

K-Means

Update the cluster centers by taking the means of each cluster.

Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

Repeat until convergence.

Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

K-Means

K-Means

What are the limitations of this approach?

What is the ideal number of clusters?

Complexity of building clusters: O(Kn) in each step until convergence.

Clustering is offline: i.e., it does not happen at feature querying time.

K-Means

Variation: K-medoids

Instead of using means as the cluster centers, use *medians*, which are actual existing features.

How to Separate these Features?

How to Separate these Features?

They're linearly separable, \sim -but what is the best separation?

s://towardsdatascience.com/ -kernel-trick-c98cdbcaeb3f

60

 Σ_2

How to Separate these Features?

They're linearly separable, but what is the best separation?

Solution: Find the hyperplane that maximizes the margin between the classes.

leb3f

 X_2

How to Separate these Features?

The feature vectors serving as reference to the margin of the separation hyperplane are called support vectors.

tric ∞ leb3f

How to Separate these Features?

How to deal with non-linearly separable spaces?

How to Separate these Features?

How to deal with non-linearly separable spaces?

Solution: kernel trick. Transform the data to higher-dimensional spaces where they are linearly separable.

Use a kernel function for that (e.g., radial basis).

64

How to Separate these Features?

Kernel-trick examples.

https:/

//to

-kernel-

tric

Ö

How to Separate these Features?

Kernel-trick examples.

How to Separate these Features?

Kernel-trick examples.

Implementation available at https://scikit-learn.org/stable/modules/svm.html

kerne cdbcaeb3t

Artificial Neuron

Artificial Neuron Building block of NNs.

Notation adjustments.

Artificial Neuron Building block of NNs.

1 Data sample \vec{x} with expected (known) label z. x_2 x_n

Feature Vector $\begin{bmatrix} \mathbf{1} \\ x_1 \end{bmatrix}$

Feature Vector

Artificial Neuron Building block of NNs.

Learnable weights \vec{w} (a.k.a. neuron's parameters).

They may start with random values.

They may start with weights previously learned on other data (transfer learning).

Feature Vector

Artificial Neuron Building block of NNs.

Linear combination of feature vector's components and neuron's weights.

Feature Vector

Artificial Neuron Building block of NNs.

Activation Function

Ideally a non-linear differentiable function to add non-linearity to the model.

Feature Vector

Linear Combination

Artificial Neuron Building block of NNs.

Activation Function

Ideally a non-linear differentiable function to add non-linearity to the model.

Necessary to allow NNs to learn non-linear functions.

Artificial Neuron Building block of NNs.

Delta Rule Supervised learning process

Input: $\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_m}, m$ samples Output: z_1, z_2, \dots, z_m, m labels

$$Loss(\vec{w}) = \sum_{k=1}^{m} (z_k - f(\vec{x}_k^T \cdot \vec{w}))^2$$

Feature Vector

Linear Combination

Artificial Neuron Building block of NNs.

Delta Rule

Supervised learning process

Input: $\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_m}, m$ samples Output: z_1, z_2, \dots, z_m, m labels

$$Loss(\vec{w}) = \sum_{k=1}^{m} (z_k - f(\vec{x}_k^T \cdot \vec{w}))^2$$

Partial derivative: $\frac{\delta Loss(\vec{w})}{\delta w_i} = -\sum_{k=1}^m 2(z_k - f(\vec{x}_k^T \cdot \vec{w})) \times x_{ki} \times f'(\vec{x}_k^T \cdot \vec{w}))$

$$y = \sum_{i=0}^{n} (w_i \times x_i), x_0 = 1$$
$$\hat{y} = f(y)$$

Loss Surface

$$\overrightarrow{x_k^T} \cdot \overrightarrow{w} = 0$$

Artificial Neuron Building block of NNs.

Delta Rule

Supervised learning process

Input: $\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_m}, m$ samples Output: z_1, z_2, \dots, z_m, m labels

$$Loss(\vec{w}) = \sum_{k=1}^{m} (z_k - f(\vec{x}_k^T \cdot \vec{w}))^2$$

$$\Delta w_i = \sum_{k=1}^m \alpha(z_k - f(\overrightarrow{x}_k^T \cdot \overrightarrow{w})) \times x_{ki} \times f'(\overrightarrow{x}_k^T \cdot \overrightarrow{w})$$

 $y = \sum (w_i \times x_i), x_0 = 1$ i=0 $\hat{y} = f(y)$

Loss Surface

= 0, α is step size, one Δ for each weight.

Adding **Hidden Layers**

Adding **Hidden Layers**

Adding **Hidden Layers**

 $\hat{y} = f\left(\begin{pmatrix} w_1^2 & w_2^2 \end{pmatrix} f\left(\begin{pmatrix} w_{11}^1 & w_{21}^1 \\ w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} w_{01}^1 \\ x_{02}^1 \end{pmatrix} \right)$

To increase computing power.

$$\hat{y} = f\left(\begin{pmatrix} w_1^2 & w_2^2 \end{pmatrix} f\left(\begin{pmatrix} w_{11}^1 & w_{21}^1 \\ w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} w_{11}^1 & w_{22}^1 \\ w_{12}^1 & w_{22}^2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{12}^1 & w_{22}^2 \end{pmatrix} \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} + \begin{pmatrix} w_1^1 & w_{22}^1 \\ w_{22}^1 & w_{22}^2 \end{pmatrix} +$$

82

 W_{02}

 x_1

 x_2

To increase computing power.

$$\begin{array}{c} & w_{01}^{1} \\ & w_{02}^{1} \\ & w_{02}^{1} \\ & w_{11}^{1} \\ & w_{12}^{1} \\ & w_{12}^{1} \\ & w_{21}^{1} \\ & w_{22}^{1} \\ & w_{22}^{1} \\ & & w_{22}^{1} \\ \end{array}$$

$$\hat{y} = f\left(\begin{pmatrix} w_1^2 & w_2^2 \end{pmatrix} f\left(\begin{pmatrix} w_{11}^1 & w_{21}^1 \\ w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix} + \begin{pmatrix} w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} w_{12}^1 & w_{22}^1 \end{pmatrix} + \begin{pmatrix} w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} w_{12}^1 & w_{22}^1 \end{pmatrix} + \begin{pmatrix} w_{12}^1$$

83

$$\hat{y} = f\left(\begin{pmatrix} w_1^2 & w_2^2 \end{pmatrix} f\left(\begin{pmatrix} w_{11}^1 & w_{21}^1 \\ w_{12}^1 & w_{22}^1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} w_{11}^1 & w_{22}^1 \\ w_{12}^1 & w_{22}^2 \end{pmatrix} \right)$$

Adding **Hidden Layers**

Adding **Hidden Layers**

Universal **Approximation** Theorem

An NN with one or more hidden layers with compressive (non-linear) activation function can approximate any continuous function.

Training this NN might be a nightmare!

Input

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Backpropagation

Input

Key algorithm to train the NN.

Loss Surface Gradient Descent

Hidden Layers

Output Layer

m samples, *l* hidden layers

96

Backpropagation

Key algorithm to train the NN.

The *m* samples may make back propagation too slow (too much data).

 ΔM

Loss Surface Gradient Descent

Challenges

What α (step) should one use?

$$v_i = \sum_{k=1}^{m} \alpha(z_k - f(\overrightarrow{x}_k^T \cdot \overrightarrow{w})) \times x_{ki} \times f'(\overrightarrow{x}_k^T \cdot \overrightarrow{w}) = 0$$

Backpropagation

Key algorithm to train the NN.

Loss Surface Stochastic Gradient Descent (SGD)

Challenges

The *m* samples may make back propagation too slow (too much data).

What α (step) should one use?

 ΔM

Solution **Stochastic Gradient Descent** Randomly select multiple smaller subsets of the *m* samples (mini-batches). Run more but faster iterations of backpropagation.

Already implemented in the NN libraries.

$$v_i = \sum_{k=1}^m \alpha(z_k - f(\overrightarrow{x}_k^T \cdot \overrightarrow{w})) \times x_{ki} \times f'(\overrightarrow{x}_k^T \cdot \overrightarrow{w}) = 0$$

Convolutional Neural Networks (CNN)

How NNs are used in CV?

Flatten the image and feed pixel values to the input?

Cons

Pixel values at homogeneous regions (e.g., texture and blurred regions) have too similar values and may be redundant.

Input

Hidden Layers

Convolutional Neural Networks (CNN)

How NNs are used in CV?

Solution

Add convolutions to the NN.

https://medium.com/analytics-vidhya/ understanding-convolution-operations-incnn-1914045816d4

LOYOLA JNIVERSITY CHICAGO

Convolutional Neural Networks (CNN)

How NNs are used in CV?

Solution

Add convolutions to the NN.

Examples of handcrafted convolutional filters.

https://medium.com/analytics-vidhya/understanding-convolution-operations-incnn-1914045816d4

)riginal	Gaussian Blur	Sharpen	Edge Detection
$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

Convolutional Neural Networks (CNN) How NNs are used in CV? Input

Solution

Add convolutions to the NN.

Let the NN also learn the filters.

102

ImageNet Large Scale Visual Recognition Challenge

In 2010, 1M images, 1k categories.

https://fleuret.org/dlc/#lectures

AlexNet

In 2012, Krizhevsky et al. employed AlexNet to the challenge.

They used **Graphical Processing** Units (GPU) in the process.

Krizhevsky et al.

104

GoogleNet and Others

In 2015, deeper CNNs.

ImageNet Error Rate

106

Number of Transistors Versus Synapses

TPU: Tensor Processing Unity

Available Libraries

	Language(s)	License	Main backer
PyTorch	Python, C++	BSD	Facebook
TensorFlow	Python, C++	Apache	Google
JAX	Python	Apache	Google
MXNet	Python, C++, R, Scala	Apache	Amazon
CNTK	Python, C++	MIT	Microsoft
Torch	Lua	BSD	Facebook
Theano	Python	BSD	U. of Montreal
Caffe	C++	BSD 2 clauses	U. of CA, Berkeley

https://fleuret.org/dlc/#lectures

Deep Learning (DL)

Pros and Cons

Pros

Deep NNs are powerful tools. They may have tens of millions of degrees of freedom.

They can approximate any continuous function and be fed with annotated digital images.

Cons

They are data hungry. They need a massive amount of data to be trained.

They may become black boxes with hard inner understanding. Why are they working or failing?

Be Careful

August 14, 2019

Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural **Network for Melanoma Recognition**

Julia K. Winkler, MD¹; Christine Fink, MD¹; Ferdinand Toberer, MD¹; et al

> Author Affiliations | Article Information

JAMA Dermatol. 2019;155(10):1135-1141. doi:10.1001/jamadermatol.2019.1735

What is the network learning?

What's Next?

Next Class

Local and Global Image Descriptors (Daniel's presentation).

Sakai is up!

The assignments, content of the classes, and reference papers are being posted there.

Start working on your 2 seminars I'll announce today the groups based on your answers. Count on me during office hours (and outside of them) to prepare your seminars.

https://www.codeproject.com/Articles/619039/ Bag-of-Features-Descriptor-on-SIFT-Features-with-O

