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Today you will…

3

 
Get an overview of 
CV, AI, ML, PR, SVM, 
CNN, DL, GPU, PCA, etc., 
all in favor of the 
upcoming seminars.



Content

Course Overview
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Content
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Please answer the form at: 
https://forms.gle/wsNjWG3MDiZPsEzA9



Computer Vision (CV)
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Computer Vision (CV)
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Computer Science Subfield 
It aims at developing computer systems 
that mimic the human visual system.

Reference Objective



Computer Vision (CV)
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Digital Image

Computational 
Model

Matrix of 
pixels

Data 
Structures

Image Processing

Classical 
Computer 
Vision

Machine Learning

Computer 
Graphics



Applications

Computer Vision (CV)
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Digital Image

Computational 
Model

Matrix of 
pixels

Data 
Structures

Image Processing

Classical 
Computer 
Vision

Machine Learning

Computer 
Graphics



Computer Vision (CV)
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TaskLevel 0

? 
Semantic Gap



Computer Vision (CV)
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TaskLevel 0 Level 1 Level 2 Level 3

Problem Domain Specialization

Then



Computer Vision (CV)
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TaskLevel 0

Deep Learning

Now

Machine Learning?
Artificial Intelligence?



Artificial Intelligence (AI)

13

 
What comes to your mind?

https://bit.ly/3QFaq5G



Computer Science PoV 
It aims at developing computer systems that mimic (or overcome) 
humans’ intelligence (or other living entities’).


Artificial Intelligence (AI)
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Humans AI AIHumans



Artificial Intelligence (AI)
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Perceiving
Acting

Memorizing
Reasoning

Learning
Inventing

Humans (ref.)



Artificial Intelligence (AI)
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General-purpose Systems

Artificial Intelligence (AI)
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Artificial Intelligence (AI)
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Artificial Intelligence (AI)
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Perceiving
Acting

Memorizing
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Learning
Inventing
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Learning
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Perceiving
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Inventing
Learning

Weak AI Strong AI

We are here!



Artificial Intelligence (AI)
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AI
Symbolic Logic
Fuzzy Logic
Semantic Networks
Evolutionary Models

Machine Learning
Swarm Intelligence



Artificial Intelligence (AI)
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AI
Symbolic Logic
Fuzzy Logic
Semantic Networks
Evolutionary Models

Machine Learning
Swarm Intelligence

ML

We are here!



Machine Learning (ML)
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What comes to your mind?

https://bit.ly/3xbkegQ



Machine Learning (ML)
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It is AI 
It aims at developing computer systems that mimic humans’ intelligence.

More Specifically 
It aims at developing computer systems that mimic 
the learning-ability of humans.

In Practice 
Leverage data examples to improve 
the performance on a target task.

It is 
data-driven.



ML and Pattern Recognition (PR)

Machine Learning (ML)
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ML
Computer Science

PR
Engineering

Cluster or label data. Find patterns on data.

Same field.



What data (structure) are we typically talking about? 
 
Example problem: fish classification

Machine Learning (ML)

Sea Bass or 
Salmon?



What data (structure) are we typically talking about? 
 
Example problem: fish classification

Machine Learning (ML)
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Fish
- length: float 
- weight: float 
- width: float 
- fin_count: int 

Sea Bass or 
Salmon?

Length Weight Width Fin

1.12 14.11 0.31 3.0

0.95 11.22 0.28 3.0

1.08 12.02 0.31 3.0

1.08 11.09 0.29 2.0

2.01.45 45.03 0.37

2.01.51 46.00 0.37

2.01.09 31.01 0.38



What data (structure) are we typically talking about? 
 
Example problem: fish classification

Machine Learning (ML)
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Fish
- length: float 
- weight: float 
- width: float 
- fin_count: int 

Sea Bass or 
Salmon?

Length Weight Width Fin

1.12 14.11 0.31 3.0

0.95 11.22 0.28 3.0

1.08 12.02 0.31 3.0

1.08 11.09 0.29 2.0

2.01.45 45.03 0.37

2.01.51 46.00 0.37

2.01.09 31.01 0.38

1.12 14.11 0.31 3.0

1.08 12.02 0.31 3.0

Each data sample is a Tensor.

1.08 11.09 0.29 2.0



What data (structure) are we typically talking about?

Machine Learning (ML)
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1.12 14.11 0.31 3.0

Each data sample is a Tensor.

Scalar

0-order: Scalar

1st-order tensor: Vector 
 (feature vectors)

2nd-order tensor: Matrix 
(images) 

Feature Vector



What data (structure) are we typically talking about?

Machine Learning (ML)
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1.12 14.11 0.31 3.0

Each data sample is a Tensor.

Feature Vector

 spaceℜn



ML Stages

Machine Learning (ML)
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ML Stages

Machine Learning (ML)
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E.g., separation hyperplane.



Metrics - How to measure the performance of the model?

Machine Learning (ML)
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Actual versus Predicted Labels 
 
Actual (a.k.a. ground truth)

sea bass

salmon



Metrics - How to measure the performance of the model?

Machine Learning (ML)
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Actual versus Predicted Labels 
 
Actual (a.k.a. ground truth)

decision 
boundarysalmon sea bass

sea bass

salmon

Predicted

errors



Metrics

Machine Learning (ML)
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Accuracy (Acc)

Acc =
Correct Predictions

Total Predictions



Metrics

Machine Learning (ML)
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Accuracy (Acc)

Acc =
Correct Predictions

Total Predictions

Limitation: what happens when we have 
unbalanced data? 

Example model: everything is salmon!



Metrics

Machine Learning (ML)
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Balanced Accuracy (BAcc)

BAcc =
1
C

C

∑
i=1

Correct Predictionsi

Total Predictionsi

Average of class-wise accuracy.

Example model: everything is salmon!

C is the number of classes.



Metrics

Machine Learning (ML)
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True 
Positive 

(TP)

False 
Positive 

(FP)

False 
Negative 

(FN)

True 
Negative 

(TN)

salmon

no
t s

al
m

on
sa

lm
on

not salmon

Ground truth

Pr
ed

ic
te

d

Precision (P) and Recall (R)

P =
∑C

i=1 TPi

∑C
i=1 (TPi + FPi)

C is the number of classes.

How precise is the model 
when it classifies as i? 
(focus on prediction)

R =
∑C

i=1 TPi

∑C
i=1 (TPi + FNi)

How good is the model 
in retrieving samples from class i? 
(focus on ground truth)

i=salmon



Metrics

Machine Learning (ML)
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True 
Positive 

(TP)

False 
Positive 

(FP)

False 
Negative 

(FN)

True 
Negative 

(TN)

salmon

no
t s

al
m

on
sa

lm
on

not salmon

Ground truth

Pr
ed

ic
te

d

Fscore 

Fβ =
(β2 + 1) × P × R

β2 × P + R
Harmonic mean of P and R 
(when we care about both).

i=salmon

F1score : , equal weight to P and to R.β = 1

F2score : , more weight to R.β = 2

Question: can you think of an application 
where R is more important than P?



Metrics

Machine Learning (ML)
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True 
Positive 

(TP)

False 
Positive 

(FP)

False 
Negative 

(FN)

True 
Negative 

(TN)

salmon

no
t s

al
m

on
sa

lm
on

not salmon

Ground truth

Pr
ed

ic
te

d

Fscore 

Fβ =
(β2 + 1) × P × R

β2 × P + R
Harmonic mean of P and R 
(when we care about both).

i=salmon

F1score : , equal weight to P and to R.β = 1

F2score : , more weight to R.β = 2

F0.5score : , more weight to P.β = 0.5



Metrics

Machine Learning (ML)
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Ground truth

Pr
ed

ic
te

d

Confusion Matrix 

salmon 215 32 0 3

701

370

010 0

1

102

20

1 0 0

sea bass

tuna

pirarucu

sa
lm

on

se
a b

as
s

tun
a

pira
ruc

u Visualization tool: what can you see?

Why is it called confusion matrix?

Number of samples.



Data-driven Learning Issues 
What happens in face of unseen data (normal system operation)?

Machine Learning (ML)

41

Under-fitting 
(too-simple model)

Over-fitting 
(too-complex model)

Okay-ish

Duda, O., Hart, P, and Stork, D. 
Pattern Classification. Book, 2nd ed.



Data Split

Machine Learning (ML)

42

 spaceℜN

How to estimate the model’s 
performance in face of unseen data?

Training Set Test Set

X % 100-X%Random split

Present to the learner 
(learning stage).

Reserve to assess 
performance in the end 

(inference stage).



Data Split

Machine Learning (ML)
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 spaceℜN

How to estimate the model’s 
performance in face of unseen data?

Training Set Test Set

Y % 100-(X+Y)%Alternative rand. split

Validation 
Set

X %

If one needs performance 
assessment during learning.  

Reserved! 
Don’t touch it 
until inference 

time.



Machine Learning (ML)
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Random Data Split 
What if the estimated performance (P) is a matter of chance?
K-fold Cross Validation

Report        and     .  μP σP

P1

P2

P3

P4

P5

Example: K=5, 5 random splits.



Machine Learning (ML)
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Random Data Split 
What if the estimated performance (P) is a matter of chance?
K-fold Cross Validation

Report        and     .  μP σP

P1

P2

P3

P4

P5

Example: K=5, 5 random splits.

Public Random Split

No time to train the solution 
K times?

Make random split publicly 
available, so others can: 
 
1. Reproduce your results. 
 
2. Use the same split to train 
and compare their solutions.

https://www.displayr.com/ 
what-is-reproducible-research/



Machine Learning (ML)
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Data-driven Learning Types 
 
Supervised Learning (1/2) 
 
The target problem has 
well-defined classes. 
 
There are annotated data to train 
the learner. 
 
Annotation: each sample (feature vector) 
has a class.

Yao, L., Miller, J. 
Tiny ImageNet with CNNs. CS Stanford, 2015.



Data-driven Learning Types 
 
Supervised Learning (1/2) 
Closed Set versus Open Set

Machine Learning (ML)
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Machine Learning (ML)
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Closed Set versus Open Set 

Query 
(Liam Hemsworth)

Robert 
Downey Jr.

Scarlet 
Johansson

Mark 
Ruffalo

Chris 
Evans

Chris 
Hemsworth

Jeremy 
Renner

Dataset

Closed Set Open Set
Output 
This is 
Chris Hemsworth!

Output 
I don’t know 
this person!

Feature Space



Data-driven Learning Types 
 
Unsupervised Learning (2/2) 
 
Either the target problem has 
no well-defined classes. 
 
OR 
 
There are not annotated data to train 
the learner.

Machine Learning (ML)

49



Learner and Model Solutions

Machine Learning (ML)

50

Le
ar

ni
ng

 
St

ag
e Example 

Data ModelLearner

What solutions of Learner can we use? 
 
Unsupervised 
Clustering methods such as k-means, 
k-medoids, etc.

 
 
Supervised 
Decision trees, random forests, 
Support Vector Machines (SVM), 
typical Neural Networks (NN), etc.

Let’s see some…



K-Means
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Cluster the features and limit 
the k-nearest search to one or 
a couple of clusters.

How to reduce 
data complexity?

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

There will be less elements to 
consider.



K-Means
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Cluster the features and limit 
the k-nearest search to one or 
a couple of clusters.

How to reduce 
data complexity?

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

There will be less elements to 
consider.



K-Means
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Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Select K random features as 
cluster centers.



K-Means
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Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Assign features to the closest 
cluster centers.



K-Means
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Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Update the cluster centers by 
taking the means of each cluster.



K-Means
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Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Repeat until convergence.



K-Means
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What are the limitations of this 
approach?

What is the ideal number of clusters?

Clustering is offline: i.e., it does not 
happen at feature querying time.

Complexity of building clusters: 
O(Kn) in each step until convergence. K: #clusters 

n: #features



K-Means
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Variation: K-medoids

Instead of using means as the cluster 
centers, use medians, which are 
actual existing features.



How to Separate 
these Features?

Support Vector Machines (SVM)

59

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
They’re linearly separable, 
but what is the best 
separation?

Support Vector Machines (SVM)

60

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
They’re linearly separable, 
but what is the best 
separation? 
 
Solution: 
Find the hyperplane that 
maximizes the margin 
between the classes.

Support Vector Machines (SVM)

61

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
The feature vectors 
serving as reference 
to the margin of the 
separation hyperplane 
are called support vectors.

Support Vector Machines (SVM)

62

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
How to deal with non-linearly 
separable spaces?

Support Vector Machines (SVM)

63

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
How to deal with non-linearly 
separable spaces? 
 
Solution: kernel trick. 
Transform the data to 
higher-dimensional spaces where 
they are linearly separable. 
 
Use a kernel function for that (e.g., radial basis).

Support Vector Machines (SVM)

64

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
Kernel-trick 
examples.

Support Vector Machines (SVM)

65

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
Kernel-trick 
examples.

Support Vector Machines (SVM)

66

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



How to Separate 
these Features? 
 
Kernel-trick 
examples. 
 
 
 
Implementation 
available at 
https://scikit-learn.org/stable/modules/svm.html

Support Vector Machines (SVM)

67

https://tow
ardsdatascience.com

/ 
the-kernel-trick-c98cdbcaeb3f



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)

68

y =
n

∑
i=1

(wi × xi) + b

…

x1

x2

xn

X
w1

X

X

w2

wn

+

Feature 
Vector Linear Combination

y

b

f

Activation 
Function

̂y

Output

̂y = f(y)

Bioinspiration

Stanford, CS231n



Artificial Neuron 
Building block of NNs. 
 
Notation 
adjustments.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

…

x1

x2

xn

X
w1

X

X
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+
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Vector Linear Combination
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w0

f

Activation 
Function

̂y

Output

1 X

̂y = f(y)



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

…

x1

x2

xn

X
w1

X

X

w2

wn

+

Feature 
Vector Linear Combination

y

w0

f

Activation 
Function

̂y

Output

1 X

x1

x2

xn

Feature 
Vector

1 ̂y = f(y)
Data sample  
with expected  
(known) label .

x

z

…



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

…

x1

x2

xn

X
w1

X

X

w2

wn

+

Feature 
Vector Linear Combination

y

w0

f

Activation 
Function

̂y

Output

1 X

̂y = f(y)

w1

w2

wn

w0

…

Learnable weights  
(a.k.a. neuron’s parameters). 
 
They may start with random 
values.


They may start with weights 
previously learned on 
other data (transfer learning).

w



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

…

x1

x2

xn

X
w1

X

X

w2

wn

+

Feature 
Vector Linear Combination

y

w0

f

Activation 
Function

̂y

Output

1 X

̂y = f(y)

y Linear combination 
of feature vector’s 
components and neuron’s 
weights.



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

…

x1

x2

xn

X
w1

X

X

w2

wn

+

Feature 
Vector Linear Combination

y

w0

f

Activation 
Function

̂y

Output

1 X

f

̂y = f(y)

Activation Function 
 
Ideally a non-linear 
differentiable function 
to add non-linearity 
to the model.



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)

74

f Activation Function 
 
Ideally a non-linear 
differentiable function 
to add non-linearity 
to the model. 
 
Necessary to allow NNs 
to learn non-linear functions.

tanh(y)
y

1
1 + e−y

y

y

max(0,y)Examples



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

…

x1

x2

xn

X
w1

X

X

w2

wn

+

Feature 
Vector Linear Combination

y

w0

f

Activation 
Function

̂y

Output

1 X

̂y = f(y)Delta Rule 
Supervised learning process 
 
   Input:  samples 
Output:  labels


x1, x2, . . . , xm, m
z1, z2, . . . , zm, m

Loss(w) =
m

∑
k=1

(zk − f( x T
k ⋅ w))2



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

̂y = f(y)Delta Rule 
Supervised learning process 
 
   Input:  samples 
Output:  labels





 
Partial derivative: 

x1, x2, . . . , xm, m
z1, z2, . . . , zm, m

Loss(w) =
m

∑
k=1

(zk − f( x T
k ⋅ w))2

δLoss(w)
δwi

= −
m

∑
k=1

2(zk − f( x T
k ⋅ w)) × xki × f′￼( x T

k ⋅ w) = 0

Loss Surface



Artificial Neuron 
Building block of NNs.

Neural Networks (NN)
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y =
n

∑
i=0

(wi × xi), x0 = 1

̂y = f(y)Delta Rule 
Supervised learning process 
 
   Input:  samples 
Output:  labels





 is step size, one  for each weight.

x1, x2, . . . , xm, m
z1, z2, . . . , zm, m

Loss(w) =
m

∑
k=1

(zk − f( x T
k ⋅ w))2

Δwi =
m

∑
k=1

α(zk − f( x T
k ⋅ w)) × xki × f′￼( x T

k ⋅ w) = 0, α Δ

Loss Surface



Adding 
Hidden Layers 
 
To increase 
computing 
power.

Neural Networks (NN)

78
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Adding 
Hidden Layers 
 
To increase 
computing 
power.

Neural Networks (NN)
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11

X
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21
+

w1
02

1

X

79

w1
01
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+

X
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12

X
w1

22

f

f

…

Input
One more neuron…



Adding 
Hidden Layers 
 
To increase 
computing 
power.

Neural Networks (NN)
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x1

x2

X
w1

11

X
w1

21
+

w1
02

f ̂y

1

X

80

w1
01

X

+

X
w1

12

X
w1

22

X

w2
0

f X

f

w2
1

w2
2

X

+

…

Input
Hidden Layer

Output Layer



Adding 
Hidden Layers 
 
To increase 
computing 
power.

81
81
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Adding 
Hidden Layers 
 
To increase 
computing 
power.

82
82
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11
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Universal 
Approximation 
Theorem 
 
An NN with one or more 
hidden layers with 
compressive (non-linear) 
activation function can 
approximate any 
continuous function. 
 
Training this NN might be a 
nightmare! 

…

…

…

Neural Networks (NN)
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Input Hidden Layers Output Layer
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Backpropagation 
 
Key algorithm to train the NN.
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Backpropagation 
 
Key algorithm to train the NN.
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Loss Surface 
Gradient Descent

Challenges 

The  samples may make back propagation too slow 
(too much data).


What  (step) should one use?

m

α

Δwi =
m

∑
k=1

α(zk − f( x T
k ⋅ w)) × xki × f′￼( x T

k ⋅ w) = 0
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Challenges 

The  samples may make back propagation too slow 
(too much data).


What  (step) should one use?

m

α

Δwi =
m

∑
k=1

α(zk − f( x T
k ⋅ w)) × xki × f′￼( x T

k ⋅ w) = 0

Loss Surface 
Stochastic Gradient Descent (SGD)

Solution 
Stochastic Gradient Descent 
Randomly select multiple smaller subsets of the  samples 
(mini-batches). 
Run more but faster iterations of backpropagation.

m

Already implemented 
in the NN libraries.



How NNs are used in CV? 

Convolutional Neural Networks (CNN)
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…

…

…

Input Hidden Layers Output Layer
Flatten the image and 
feed pixel values 
to the input?

Cons 
Pixel values at 
homogeneous regions 
(e.g., texture and blurred regions) 
have too similar values and 
may be redundant.
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Solution 
Add convolutions to the NN.

https://developer.apple.com
/library/archive/

docum
entation/Perform

ance/C
onceptual/vIm

age/
C

onvolutionO
perations/C

onvolutionO
perations.htm

l

https://medium.com/analytics-vidhya/
understanding-convolution-operations-in-
cnn-1914045816d4
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Solution 
Add convolutions to the NN.


Examples of handcrafted 
convolutional filters.

https://medium.com/analytics-vidhya/understanding-convolution-operations-in-
cnn-1914045816d4
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Input

Solution 
Add convolutions to the NN.

Let the NN also learn the filters.

https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f

…

…

…



Deep Learning (DL)
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ImageNet Large Scale 
Visual Recognition 
Challenge 
 
In 2010, 1M images, 
1k categories.

https://fleuret.org/dlc/#lectures



Deep Learning (DL)

104

AlexNet 
 
In 2012, Krizhevsky et al. 
employed AlexNet to the 
challenge. 
 
They used 
Graphical Processing 
Units (GPU) in the process.

Krizhevsky et al.
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GoogleNet and Others 
 
In 2015, deeper CNNs. 
Deep Learning kicks in.

Szegedy et al.
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AI

ML

DL

ImageNet Error Rate

G
ershgorn, 2017
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AI

ML

DL

Number of Transistors Versus Synapses

W
ikipedia

TPU: Tensor Processing Unity

#T
ra

ns
is

to
rs
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Available Libraries

https://fleuret.org/dlc/#lectures
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Pros and Cons 
 
 
Pros 
Deep NNs are powerful tools. 
They may have tens of millions 
of degrees of freedom. 
 
They can approximate any 
continuous function and be fed 
with annotated digital images.

 
 
 
Cons 
They are data hungry. 
They need a massive amount of data 
to be trained. 
 
They may become black boxes 
with hard inner understanding. 
Why are they working or failing?



Be Careful
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What is the network 
learning?



What’s Next?
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Next Class 
Local and Global Image Descriptors 
(Daniel’s presentation). 
 
Sakai is up! 
The assignments, content of the classes, 
and reference papers are being posted there. 
 
Start working on your 2 seminars 
I’ll announce today the groups based on your answers. 
Count on me during office hours (and outside of them) 
to prepare your seminars.

https://www.codeproject.com/Articles/619039/ 
Bag-of-Features-Descriptor-on-SIFT-Features-with-O


