
2. Questions
Considering the content of the three input files s1.csv, s2.csv, and s3.csv, one for each
hypothetical Biometric system, please answer the following questions. You may leverage and
adapt the functions and metrics available in metrics.py.

2.1. For each one of the three Biometric systems, what score threshold (a.k.a. operating point)
should you use? Please explain your answer and describe how you have obtained each one of
the respective system thresholds. (2 points)

The following is the threshold I would use for each system:

Name Threshold

s1.csv 62.958

s2.csv 0.5849

s3.csv 2.3469

I arrived at these numbers for the threshold by computing the value at which the FMR and
FNMR values were equal. In other words, I computed the threshold that would be needed to
achieve EER (equal error rate).

For models s1 and s2, these values could be computed by utilizing the given function,
compute_sim_fmr_fnmr_eer provided in the metrics python file. The value for s3 was
computed by adapting the functions for computing FMR and FNMR at a given threshold for
distances instead of similarities. The process for computing the threshold at EER is nearly
identical to s1 and s2, with the only difference being the utilization of the adapted functions.

I decided to use the threshold at EER simply because not much is known about the nature of
these models, so it would be safe to choose a value at which the errors are equivalent.
However, as discussed in class, with more information it might be preferable for one type of
error to be smaller than the other.



2.2. For each system, plot and provide a graph with the distributions of their respective scores.
(1 point)

Graphs:

2.3. According to the d’ (d-prime) values that one might compute for each system, which of the
three should you use if you had to select only one for identification? Please justify your answer.
(2 points)

According to the d’ values of the three systems, System 3 is the most ideal because it has the
highest d’ value, indicating that there is a greater separation between the impostor and genuine
distributions, meaning that this system is better at distinguishing between the two groups.



2.4. Plot and provide a single graph with the ROC curves and AUCs of all the three systems
together. A reference to help you: https://bit.ly/3rrnSPR. (1 point)

Graph:

2.5. According to the ROC curves and AUC values, which one of the three systems should you
use if you had to select only one for identification? Please justify your answer. (2 points)

I would choose s3 because it has the highest AUC value (as seen in the graph above). A higher
AUC value indicates a lower FMR and higher TMR (or lower FNMR), and this can be seen with
the actual curves as well, since the blue curve, representing s3, is closest to the edges.

https://bit.ly/3rrnSPR


2.6. Please provide your modified version of metrics.py, adapted to deal with scores that are distances rather than similarities. (2
points)

import math
import matplotlib.pyplot as plt

# Sums all the values in the given list, using pairwise summation to reduce round-off error.
def _pairwise_sum(values):

if len(values) == 0:
return 0.0  # nothing to sum, return zero

elif len(values) == 1:
return float(values[0])  # one element, returns it

elif len(values) == 2:
return float(values[0]) + float(values[1])  # two elements, returns their sum

else:
i = int(len(values) / 2)
return _pairwise_sum(values[0:i]) + _pairwise_sum(values[i:len(values)])  # recursive call

# Computes the variance of the given values.
def _compute_var(values):

if len(values) == 0:
return float('NaN')  # nothing to compute, returns not-a-number

# mean of values
mean = _pairwise_sum(values) / len(values)

# deviations
deviations = [(v - mean) ** 2.0 for v in values]

# variance
var = _pairwise_sum(deviations) / len(deviations)
return var



# Loads data from the CSV file stored in the given file path.
# Expected file line format: <label>,<score>
# Comment lines starting with "#" will be ignored.
# Output: array of (<label>,<score>) elements.
def load_data(file_path):

# output
output = []

# reads each line of the file, ignoring empty lines and the ones starting with '#'
with open(file_path) as f:

for line in f:
content = line.strip().split(',')
if len(content) > 0 and len(content[0]) > 0 and content[0][0] != '#':

label = int(content[0])
score = float(content[1])

output.append((label, score))

return output

# Computes d-prime for the given observations.
# Observations must be an array of (<label>,<score>) elements.
# Labels must be either 0 (impostor) or something else (genuine).
# If either the number of impostors or genuine observations is zero, it returns 'NaN' as d-prime.
def compute_d_prime(observations):

# separates genuine and impostor scores
genuine_scores = []
impostor_scores = []

for obs in observations:
if obs[0] == 0:  # impostor observation

impostor_scores.append(obs[1])
else:  # genuine observation

genuine_scores.append(obs[1])

if len(genuine_scores) == 0 or len(impostor_scores) == 0:
return float('NaN')

# computes mean values



genuine_mean = _pairwise_sum(genuine_scores) / len(genuine_scores)
impostor_mean = _pairwise_sum(impostor_scores) / len(impostor_scores)

# computes variances
genuine_var = _compute_var(genuine_scores)
impostor_var = _compute_var(impostor_scores)

# computes d-prime
d_prime = math.sqrt(2.0) * abs(genuine_mean - impostor_mean) / math.sqrt(genuine_var + impostor_var)
return d_prime

#######################################################
##       MODIFIED METHODS THAT ACCOUNT FOR USING     ##
##         DISTANCE AS WELL AS SIMILARITY SCORE      ##
#######################################################
def compute_fmr(observations, threshold, metric):

impostor_count = 0
false_match_count = 0

for obs in observations:
if obs[0] == 0:  # impostor observation

impostor_count = impostor_count + 1

if metric == 'score': # Check which metric is being used and adjust comparison accordingly
if obs[1] >= threshold:

false_match_count = false_match_count + 1

if metric == 'distance':
if obs[1] < threshold:

false_match_count = false_match_count + 1

if impostor_count > 0:
return float(false_match_count) / impostor_count

else:
return float('NaN')

def compute_fnmr(observations, threshold, metric):
genuine_count = 0
false_non_match_count = 0



for obs in observations:
if obs[0] != 0:  # genuine observation

genuine_count = genuine_count + 1

if metric == 'score': # Check which metric is being used and adjust comparison accordingly
if obs[1] < threshold:

false_non_match_count = false_non_match_count + 1

if metric == 'distance':
if obs[1] >= threshold:

false_non_match_count = false_non_match_count + 1

if genuine_count > 0:
return float(false_non_match_count) / genuine_count

else:
return float('NaN')

def compute_fmr_fnmr_eer(observations, metric):
# computed FNMR and FMR at EER, and their difference, and EER threshold
output_fnmr = float('inf')
output_fmr = float('inf')
fnmr_fmr_diff = float('inf')
output_threshold = float('inf')

# sorted list of scores
scores = [obs[1] for obs in observations]
scores = sorted(scores)
if len(scores) == 0:

return float('NaN'), float('NaN'), float('NaN')  # nothing to do here

# for each score taken as threshold
for threshold in scores:

current_fnmr = compute_fnmr(observations, threshold, metric) # FMR and FNMR are calculated based
current_fmr = compute_fmr(observations, threshold, metric)   # on which metric we want to use

# cancels computation if any of the FNMR or FMR values are 'NaN' (not possible to compute them)
if not float('-inf') < current_fnmr < float('inf') or

not float('-inf') < current_fmr < float('inf'):



return float('NaN'), float('NaN'), float('NaN')  # nothing to do here

# updates the difference between FNMR and FMR, if it is the case
current_diff = abs(current_fnmr - current_fmr)
if current_diff <= fnmr_fmr_diff:

output_fnmr = current_fnmr
output_fmr = current_fmr
fnmr_fmr_diff = current_diff
output_threshold = threshold

else:
# difference will start to increase, nothing to do anymore
break

return output_fnmr, output_fmr, output_threshold

def compute_fmr_tmr_auc(observations, metric):
# sorted list of scores
scores = [obs[1] for obs in observations]
scores = sorted(scores)
if len(scores) == 0:

return float('NaN'), None, None  # nothing to do here

# holds the computed FMR and FNMR values
fmr = []
tmr = []

# for each score taken as threshold
for threshold in scores:

current_fmr = compute_fmr(observations, threshold, metric)   # FMR and FNMR are calculated based
current_fnmr = compute_fnmr(observations, threshold, metric) # on which metric we want to use

# cancels computation if any of the FNMR or FMR values are 'NaN' (not possible to compute them)
if not float('-inf') < current_fmr < float('inf') or not float('-inf') < current_fnmr <

float('inf'):
return float('NaN'), None, None  # nothing to do here

# adds the computed values to the proper lists
fmr.append(current_fmr)



tmr.append(1.0 - current_fnmr)

# computes the auc
auc_parts = []
for i in range(len(fmr) - 1):

auc_parts.append(abs(fmr[i] - fmr[i + 1]) * (tmr[i] + tmr[i + 1]) / 2.0)
auc = _pairwise_sum(auc_parts)

return auc, fmr, tmr

def plot_all_fmr_tmr_auc(fmrs1, tmrs1, auc1, fmrs2, tmrs2, auc2, fmrs3, tmrs3, auc3):
if float('-inf') < auc1 < float('inf') and float('-inf') < auc2 < float('inf')

and float('-inf') < auc3 < float('inf'):
plt.xlabel('FMR')
plt.ylabel('TMR')
plt.plot(fmrs1, tmrs1, 'r', label='System 1 AUC: ' + '{:.2f}'.format(auc1))
plt.plot(fmrs2, tmrs2, 'g', label='System 2 AUC: ' + '{:.2f}'.format(auc2))
plt.plot(fmrs3, tmrs3, 'b', label='System 3 AUC: ' + '{:.2f}'.format(auc3))
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.legend(loc='lower right')
plt.title('ROC curve')
plt.show()

# Plots the histograms of the scores of the impostors and of the genuine observations together.
# Observations must be an array of (<label>,<score>) elements.
# Labels must be either 0 (impostor) or something else (genuine).
def plot_hist(observations, x_axis_label):

impostors = []
genuine = []

for item in observations:
if item[0] == 0:

impostors.append(item[1])
else:

genuine.append(item[1])

plt.xlabel(x_axis_label)
plt.ylabel('frequency')



plt.hist(impostors, facecolor='red', alpha=0.5, label='impostor', align='mid')
plt.hist(genuine, facecolor='blue', alpha=0.5, label='genuine', align='mid')

plt.legend(loc='lower right')

dprime = compute_d_prime(observations)
if float('-inf') < dprime < float('inf'):

plt.title("Score distribution, d'=" + '{:.2f}'.format(dprime))
else:

plt.title('Score distribution')

plt.show()


