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Today you will...

Get to know
Alternative traits.
Importance of Multibiometrics.
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Alternative Iraits
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Source: Mani and Nadeski, Processing solutions for biometric systems, Texas Instruments, 2015
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Voice Recognition

Human Vocal System

Complex combination of organs,
rooted on genetic factors e Ton
but mostly epigenetic. S XK

PALATE

o, 806, Hlooc, Sress
and even mother tongue t
will influence somebody’s voice.

l g B. H. Juang, L. R. Rabiner

TO LUNGS Hidden Markov Models for Speech Recognition

(POWER) Technometrics, 1991
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Voice Recognition

Acquisition

Off-line On-line
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Voice Recognition

Field Development

Signal Sound
Processing Processing
Coding and

A Decoding
Speech Verification
Voice
Processing < <

Recognition Speaker Identification
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Variants

Voice Recognition

Fixed-Text Security

Enrollment and authentication
with the same word.

Text-Dependent
Usage of authentication phrases
(composed from a pre-defined vocabulary).

Text-Independent
Users may say any word/phrase.

Conversational (under development)
Speech and speaker recognition,
with semantic analysis.

/

Increases
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Alternative Iraits

Signature

Fingerprint
31%

Source: Mani and Nadeski, Processing solutions for biometric systems, Texas Instruments, 2015
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Vein Recognition

Human Circulatory System
Veins are epigenetic.

Commonest modalities:
palm and finger veins.

Dr. Adam Czajka Hitachi
Finger Vein Authentication
White Paper, 2004
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Vein Recognition

Acquisition & ¢+ deoxyhemoglobin oxyhemoglobin water
100
Sassaroli et al.

' ' Near-infrared t f
Dedicated near-infrared (NIR) ’ \ o sty of baigton o,
||gh't Sensors é 10 g NIR Tufts University
(on-line acquisition). S \ AL

£ 1 .
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Vein Recognition

Palm Vein Acquisition

Inner side Outer side Main veins NIR source

CCD matrix ——

- — |
NIR source J X , ‘ - '
I —— Y

CCD matrix CCD matrix

Dr. Adam Czajka
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Vein Recognition

Palm Vein Acquisition MITRE

State of the Art Biometrics Excellence Roadmap
Tech. Report, 2008

Copyr i ght & FUMITSU LINITED 2008 ‘ ‘ -

Fujitsu PalmSecure reader Techsphere VP Il reader
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Vein Recognition

Finger Vein Acquisition

Capture of the reflected Side illumination Top illumination
Iight messsss  NIR source
LL NIR source =
| | LD
Jxxx NIR source iﬁi
CCD matrix CCD matrix CCD matrix

Dr. Adam Czajka
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Vein Recognition

Finger Vein Acquisition

MITRE
State of the Art Biometrics Excellence Roadmap
Tech. Report, 2008

LS

9

Hitachi H1 reader
(with top illumination)
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Vein Recognition

Vein Description Strategies

Dr. Adam Czajka

v\ygil
i

Raw image Edge enhancement Binary image Skeletal image
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Vein Recognition

Vein Description Strategies

Miura et al.

Extraction of Ginger-Vein Patterns Using Maximum
Curvature Points in Image Profiles

IAPR 2005
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Alternative Iraits

Market

Fingerprint
31%

Source: Mani and Nadeski, Processing solutions for biometric systems, Texas Instruments, 2015
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Signature Recognition

Behavioral Trait
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Signature Recognition

Acquisition

On-line

sduy

A¢,Ud1em

MXLOOI6trTIA
/u02°'aqNINOA MMM //
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Signature Recognition

Off-line Acquisition

Based on visual content only.

e >

General-purpose sensor
(e.g., scanner, camera).

Not necessarily aided by a computer.

https://www.youtube.com/watch?v=NPf20tAxB8U
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Signature Recognition

On-line Acquisition

pen tip pen tip

Various components are captured position pressure
from the signing behavior. i

L L LT T T A L L L L T - T L T L T R, ST

pen
azimuth

pen
altitude

_________
-------
_______
.......

.....

.........................................................................................................................

Dr. Adam Czajka
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On-line Acquisition

Various components are captured
from the signing behavior.

Special sensors
(such as digitizing tablets).

Button state

and pen | ||

tip presure

Power supply

Signature Recognition

Processor

Modulator

Data output

generator

Pressure
Button state
Device ID

Dr. Adam Czajka

Inductor-capacitor
circuit (LC circuit)
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Signature Recognition

On-line Acquisition

Various components are captured
from the signing behavior.

Special sensors
(such as digitizing tablets).

Dr. Adam Czajka

Aided by computer
(@cquisition, enhancement, feature extraction, matching, decision).
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Alternative Iraits

Market Signature
Vein 47

10%

Fingerprint
31%

Source: Mani and Nadeski, Processing solutions for biometric systems, Texas Instruments, 2015

* Y UNIVERSITY OF

)] NOTRE DAME




DNA

Other Traits

Gate

Tongue Print
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Ahem...

Other Traits

neled securky 1y SOPHOS https://nakedsecurity.sophos.com/
PRODUCTS > FREE TOOLS > FREE SOPHOS HOME > 2020/04/08/as-if-the-world-couldnt-get-
any-weirder-this-ai-toilet-scans-your-
anus-to-identify-you/

Have you listened to our podcast? Listen now

As if the world couldn’t get any weirder, this
Al toilet scans your anus to identity you
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Multibiometrics

Pick a Trait

Universality (1/8)
Does everybody have the trait?

Unigueness (2/8)
How likely two or more individuals will present the same trait?

Permanence (3/8)
How easily does the trait change?

Measurability (4/8)
How easy is it to acquire and digitize the trait?
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Multibiometrics

Pick a Trait

Acceptability (5/8)
Will individuals collaborate during data collection?

Circumvention (6/8)
How hard can the trait be forged or imitated?

Performance (7/8)
How good is the trait quantitatively
according to objective metrics?

Accountability (8/8)
How easy is it for the everyman to understand the trait comparison?
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Multibiometrics

Pick a Trait

There I1s no silver bullet.
No trait satisfies all concepts.

gmruinedchildhood

* Y UNIVERSITY OF

= NOT RE DAM E




Multibiometrics

Solution

Rely on multiple traits.

Allow various presentations.
Combine results (data fusion).

Pros Cons

More concepts can be satisfied. System becomes more expensive
System is more robust to attacks. (more sensors, more software).

It becomes more expensive More runtime.

to attack the system. More complexity.
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Multibiometrics

Types of Multibiometric Systems

v. template
g database

SENSOr

output
| | device
User presentation decision
Trait Trait Feature Feature ..
Y : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

9 template
g, database

SENSOr

output

~ device

presentation decision

B | \
Trait Trait Feature Feature ..
.l : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-sensor \., template
sensor v_— database
/ Sensor
/ \ ) output
~ sensor device
presentation decision
B | \
Trait Trait Feature Feature ..
.l : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-sensor Systems (1/5)
Single trait, multiple sensors.

If one sensor fails, other
sensors might overcome

the failure.
visible light NIR

Dr. Walter Scheirer

thermal
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Multibiometrics

Types of Multibiometric Systems

v. template
g database

SENSOr

output
| | device
User presentation decision
Trait Trait Feature Feature ..
Y : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

9 template
g database
Sensor output
' // . , device
S presentation Mul'ti-.algorithm decision
Trait Trait Feature Feature ..
.l : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhan@ed sample feature similarity for dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-algorithm Systems (2/5)

Single trait, single sensor, m'“{" ”ﬂ‘}m

mUItlple feature extractors ana Daugman’s iris code from 2D Gabor filters
matching solutions.

Complementary solutions ﬁmvﬁ‘?
will lead to higher accuracy R N o e ¢

in the end. Binary code from BSIF filters.
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Multibiometrics

Types of Multibiometric Systems

v. template
g database
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output
| | device
User presentation decision
Trait Trait Feature Feature ..
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Multibiometrics

Types of Multibiometric Systems

Multi-sample \., template
g database
sensor output
~ device
presentation decision
B | \
Trait Trait Feature Feature ..
.l : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-sample Systems (3/5)
Single trait, single sensor,
multiple presentations.

Dr. Walter Scheirer
S <09
T~ e WY [

More complete representation A’ amir = é - i.:.-‘ E

of the trait (account for variations). e & ¢ 8B 62 e
c07
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Multibiometrics

Types of Multibiometric Systems

v. template
g database
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output
| | device
User presentation decision
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Multibiometrics

Types of Multibiometric Systems

Multi-instance &
g database
sensor output
~ device
presentation decision
. | \
Trait Trait Feature Feature ..
Y : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-instance Systems (4/5)

Single trait, single sensor,

multiple instances

(e.g., right and left irises,

or each one of the 10 hand fingerprints, etc.).

No need for extra sensors or extra software.
Successful presentations might overcome
the failled ones.

Dr. Walter Scheirer
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Multibiometrics

Types of Multibiometric Systems

v. template
g database

SENSOr

output
| | device
User presentation decision
Trait Trait Feature Feature ..
Y : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-modal ,., template
I < g database
y Sensor . .
%%% output
presentation decision
Trait Trait Feature Feature Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Types of Multibiometric Systems

Multi-modal Systems (5/5)
Multiple traits (modalities).

Complementary solutions
will lead to higher accuracy
In the end.

How to combine solutions?

Perform data fusion!
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Multibiometrics

Architectures

Parallel (1/2)

Evidence acquired

from multiple sources is
processed simultaneously.

Determine
|dentity

Matching
Module

Dr. Walter Scheirer
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Multibiometrics

. Face Dr. Walter Scheirer
Architectures
Need more No Determine
Cascade (2/2) Identity
Multiple sources are Ves

processed on demand
(e.g., whenever a decision
score IS not confident

encugh). No Determine
biometric data? Identity

Yes

Fingerprint # .

=

= : \
| \
Yo RN %

Fingerprint + Face

Fingerprint + Face + Iris

Determine
|dentity
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Multibiometrics

Data Fusion Levels

e template
g database
sensor output
| | device
User presentation decision
Trait Trait Feature Feature ..
. : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Data Fusion Levels

template

Sensor Level Fusion database ™
sensor % ' output
-~ device
presentation decision
Trait Trait Feature Feature ..
.l : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanfed sample feature similarity (or dissimilarity)
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Data Fusion Levels

Sensor Level Fusion
Multiple sources of raw data
are consolidated before
feature extraction.

Example

Different captures of the

same fingerprint are combined
to generate sample larger than
Sensor capacity.

Multibiometrics

1st capture 2nd capture

[l [
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Data Fusion Levels

Sensor Level Fusion
Multiple sources of raw data
are consolidated before
feature extraction.

Example

Different captures of the

same fingerprint are combined
to generate sample larger than
Sensor capacity.

Multibiometrics

1st capture 2nd capture

gl

final alignment

initial alignment
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Data Fusion Levels

Sensor Level Fusion
Multiple sources of raw data
are consolidated before
feature extraction.

Example

Different captures of the

same fingerprint are combined
to generate sample larger than
Sensor capacity.

Multibiometrics

2nd capture

]

initial alignment

1st capture

feature extraction

final alignment

Jain and Ross
Fingerprint Mosaicking
ICASSP 2002 "I JUNIVERSITY OF
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Multibiometrics

Data Fusion Levels

e template
g database
sensor output
| | device
User presentation decision
Trait Trait Feature Feature ..
. : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Data Fusion Levels

9 template
g database

SENSOr

output
// device
User . Feature Level Fusion .
presentation decision
Trait Trait Feature Feature ..
.l : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enharfced sample feature similarity (Br dissimilarity)
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Data Fusion Levels

Feature Level Fusion
Multiple feature vectors
from the same individual
are combined into a
single feature vector,
prior to matching.

Example Strategies

Feature set 1

62

98

55

24

79

10

37

58

86

Template update

Linear combination, concatenation, etc.

Y

Multibiometrics

Ross, Nandakumar, and Jain
Handbook of Multibiometrics
Springer Books, 2006

Feature set 2

64

92

51

26

83

12

33

62

82

Y

63

95

53

25

81

11

35

60

84

Updated feature set

averaging scheme
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Multibiometrics

Data Fusion Levels

Feature Level Fusion
Challenges

Multi-sensor Systems Different-nature feature vectors.
Multi-algorithm Systems Different-nature feature vectors.

Multi-sample Systems  Same-nature feature vectors.

Multi-instance Systems Same-nature feature vectors.

Multi-modal Systems Different-nature feature vectors.
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Multibiometrics

Data Fusion Levels

Feature Level Fusion
Challenges

Multi-sensor Systems  Different-nature feature vectors.
Multi-algorithm Systems Different-nature feature vectors.

Multi-sample Systems  Same-nature feature vectors.

Multi-instance Systems Same-nature feature vectors.

Multi-modal Systems Different-nature feature vectors.
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Multibiometrics

Data Fusion Levels

Feature Level Fusion
Challenges

How to combine features of

different nature?

(e.g., different domains, different scales,
different ranges of values, etc.).

Typical solutions: concatenation, normalization.
Caution: too-large vectors will suffer from the curse of dimensionality.

Y UNIVERSITY OF
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Multibiometrics

Data Fusion Levels

e template
g database
sensor output
| | device
User presentation decision
Trait Trait Feature Feature ..
. : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Multibiometrics

Data Fusion Levels

9 template
g database Score Level Fusion
sensor output
// device
User . .
presentation decision
Trait Trait Feature Feature ..
Y : : Decision
Acquisition Enhancement Extraction Matching
acquired sample enhanced sample feature similarity (or dissimilarity)
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Data Fusion Levels

Score Level Fusion

Scores (similarities or
dissimilarities) from different
matching algorithms are
consolidated before

final decision.

Strategies

Discriminative versus generative approaches.

Face
Matcher

!

User Match
Identity Score

__Aice = 02

Bob 09

Charie = -0.4
Dick 0.6

Multibiometrics

Fingerprint
Matcher
User iMalch
Identity | Score
~ Alice | 87 |
| Bob | 85 |
| Charlie | 62 |
Dick | 20

R

Score

Fusion

Module

.

l

User ! Fused
Identity Score
| ﬂic_:_e | 1.47
Bob | 1.80
Charlie 0.92
Dick | 1.00

VITA |CEDO
DUL- | SPES

Ross, Nandakumar, and Jain
Handbook of Multibiometrics
Springer Books, 2006
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Multibiometrics

Data Fusion Levels

Hyperplane Data Random Base Regression (Closest Pair)

Score Level Fusion RIS T YO W U W T A
Discriminative Approaches R R —
Thresholds, separation hyperplanes, YN
decision trees, etc. are used e e
to decide the Biometric system B ] # ________ N O .
outcome (impostor versus genuine). XQ ------- - -------- .

Featur2 1 (X1)

Example: Support Vector Machine (SVM)
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Multibiometrics

Data Fusion Levels

Face Decision

“Ursula” Non-Match

Score Level Fusion AND X Non-Match
Discriminative Approaches

Examples:
AND and OR rules.

Ursula

% “Ursula’ Ursula

Dr. Walter Scheirer
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Multibiometrics

Data Fusion Levels

Score Level Fusion
Discriminative Approaches

Fingerprint Iris Decision

| -\? ) votes = 2

/1 “Ursula
& { Ursula

.\‘ .
1%&-\

Examples:
Majority Voting.

“Gudrun”

I ursui

Dr. Walter Scheirer
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Multibiometrics

Data Fusion Levels

Score Level Fusion 778 5 DA\
Generative Approaches ey 3 )

Data distribution models of the W
joint probability of observations and of =
scores are computed in training time (i
and further used in operation time e T
to return the probability of a presentation 4 s 2 a1 o 1 2 3 4
be either impostor or genuine.
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Multibiometrics

Data Fusion Levels

Score Level Fusion 8 NN\
Generative Approaches Sy o %E))) )

Examples: Naive Bayes, 1i;;;”;""_*iif;ff;;:;f_ii.’_ii---;t;;:;_:;;:;:‘.--,
Gaussian Mixture Models (GMM), of {:,;._._-_-_-_-,_-_;__-_;_t_ _
Extreme-Value Theory, etc. . /
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Multibiometrics

Data Fusion Levels

Score Level Fusion
Pros

Regardless of being either discriminative or generative,
it can be used with commercial off-the-shelf matchers
that do not expose their feature vectors but return
confidence scores.
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First Talk

Dr. Andrey Kuehlkamp
https://crc.nd.edu/about/people/andrey-
kuehlkamp/

TUE, April 14, 5:05 PM (EST)
https://notredame.zoom.us/my/dmoreira
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Second Talk

Dr. Adam Czajka
https://engineering.nd.edu/profiles/aczajka

THR, April 16, 5:05 PM (EST)
https://notredame.zoom.us/my/dmoreira
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