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Today you will...

Get to know
Iris description and matching.
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Feature Extraction

Typical Description Framework

normalized iris

signal processing / image filters — Let’s see 3 methods!
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Zero-Crossing Approach (1/3)
Proposed by W. W. Boles.

Iris Image Is treated as a 1D signal
(iris signature).
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Zero-Crossing Approach (1/3)
Proposed by W. W. Boles.

Iris Image Is treated as a 1D signal
(iris signature).
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Zero-Crossing Approach (1/3)
Proposed by W. W. Boles.

Iris Image Is treated as a 1D signal
(iris signature).
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Zero-Crossing Approach (1/3)
1. Iris signature is filtered by Laplacians of Gaussians (LoG)
(second derivative of Gaussian).
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Feature Extraction

Zero-Crossing Approach (1/3) AN
2. Zero-crossings lead to bits up;
everything else is zero.

LoG 1 s- LOG 2
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Feature Extraction

Zero-Crossing Approach (1/3)
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LoG 1 LoG 2
1011100111000101 0101000110010101 concatenation
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Feature Extraction

2D-Gabor Filtering Approach (2/3)
Proposed by John Daugman.

Center element of the kernel is placed over the

De facto iris description solution. e plonge Lrp b ool o

More complete and robust than

. Source pixel /
ZEero-crossing. _>€ el
2| <
/ 0

2
1
1

oo

Q\© © O

‘.a.-a.‘_s-s—LOO

& a e/
/ :

- A NN -
/\oe o o d

S O O

2D Gabor filters are convolved
with the normalized iris image. mooss

New pixel value (destination pixgl)
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2D-Gabor Filtering Approach (2/3)
Proposed by John Daugman.

(adequate to encode iris texture).

Filter 1

wavelet real component

Feature Extraction

Gabor wavelets are a good
model of neural receptive
fields found in the visual

Empirical selection of a proper Gabor wavelet cortex.

Filter 2
s
N\ o
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B eV

wavelet imaginary component

J. Daugman

Probing the Uniqueness and
Randomness of IrisCodes: Results
from 200 Billion Iris Pair
Comparisons.

IEEE Proceedings, 2006
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

Filter 1 Filter 2

Jain, Ross, and Nadakumar
Introduction to Biometrics
Springer Books, 2011

> wavelet real component wavelet imaginary component
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Feature Extraction

2D-Gabor Filtering Approach (2/3)
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Number of cells: 8 x 128 = 1024

Feature Extraction

2D-Gabor Filtering Approach (2/3)




Feature Extraction

2D-Gabor Filtering Approach (2/3)
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Number of cells: 8 x 128 = 1024 x 2 = 2048
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

Take one cell...
positive value: bit 1 /
negative value: bit O I ll ‘ ’ 1) \ .
j Number of cells: 8 x 128 = 1024 x 2 = 2048
2048 bits
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

I 2048 bits
i IrisCode




Feature Extraction

BSIF Approach (3/3)

BSIF: Binarized Statistical Image Features
ICPR 2012

Binarized Statistical Image Features (BSIF)
General-purpose local image descriptors
designed for texture encoding.

Examples of textures that
one might one to describe.
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BSIF Approach (3/3)

Binarized Statistical Image Features (BSIF)
Subspaces of representative image patches
(further used as filters) are learned from a

set of example patches through

Independent Component Analysis (ICA).

ICA: N filters of size | x | are estimated from
examples by maximizing their mutual
statistical independence.

Feature Extraction

Kannala and Rahtu
BSIF: Binarized Statistical Image Features
ICPR 2012

A% 2
N |

Eight filters of size 9x9 pixels
that better represent patches
of size 9x9. Computed with
ICA.
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BSIF Approach (3/3)

Binarized Statistical Image Features (BSIF)
Images are convolved with each BSIF filter
leading to various projections in the target

subspace.

BSIF code: a threshold is used to make
the image projections binary; anything above
zero iIs ONE, everything else is ZERO.

Feature Extraction

Kannala and Rahtu
BSIF: Binarized Statistical Image Features

ICPR 2012
'ﬁ; T,
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BSIF code examples
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BSIF Approach (3/3)
In the case of Irises...

Solution's performance
IS on par with the
Gabor-based one.

Feature Extraction

Czajka et al.
Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition
WACV 2019

Normalized iris image Filters
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Feature Extraction

BSIF Approach (3/3)
In the case of Irises...
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Iris Recognition

e template
g database
sensor
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presentation . .
Iris Iris Feature Feature
Acquisition Enhancement Extraction Matching
acquired iris, ID enhanced iris, |ID feature
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Feature Matching

How to Compare Binary Codes?

Use Hamming distance.

ns1T 1011101011000 10 1

ns2 0011 001001011100
XOR

Distance=sum(1 0 0 01 00010011001 )=6
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Feature Matching

How to Compare Binary Codes?

Problems (1/2)
How to consider iris masks?

Iris 1 Iris 2
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Feature Matching

How to Compare Binary Codes?

Problems (1 /2) [;: cells from !r!s 1
: . I,: cells from iris 2
How to consider iris masks? v
_ _ . _ 1 cells from mask 1
Solution: Normalized Hamming Distance M,: cells from mask 2

bitwise_sum(l; XOR I, AND M, AND M,)
bitwise_sum(M; AND M,)

dist =

Only cells considered by both masks are used.
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Feature Matching

How to Compare Binary Codes?

Problems (2/2)
How to deal with iris rotations?
They happen when heads are tilted...

* Y UNIVERSITY OF

;1) NOTRE DAME




Feature Matching

How to match with iris rotations?

IIIIIIIIIIIII

e N O T R E D A M E




Feature Matching

How to match with iris rotations?
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Feature Matching

How to match with iris rotations?
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Feature Matching

How to match with iris rotations?




Feature Matching

How to match with iris rotations?

misalignment
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Feature Matching

How to match with iris rotations?
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misalignment
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Feature Matching

How to Compare Binary Codes?

Problems (2/2)
How to deal with iris rotations?
Solution: provide different shifts for one of the iris codes.
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Feature Matching

How to Compare Binary Codes?

Problems (2/2)

How to deal with iris rotations?
Solution: provide different shifts

for one of the iris codes.

Compute various normalized

Hamming distances (one for each shift).

Take the smallest distance as the score.

* GROANING ™
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Iris Recognition
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Iris Recognition
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Iris Iris Feature Feature Decisi
Acquisition Enhancement Extraction Matching ecision
acquired iris, 1D enhanced iris, ID feature query, gallery,
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Iris Recognition

e template
g database
Sensor output
device
User ,
presentation . .
Iris Iris Feature Feature Decision
Acquisition Enhancement Extraction Matching
acquired iris, ID enhanced iris, |ID feature

Use distance
threshold.
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Domain-Specific BSIF Codes

Original BSIF: What is the gain of learning
Natural images to learn filters. from irises?
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Domain-Specific BSIF Codes

Manual Annotation Eye-Tracker Data

How to Select
Iris Patches?
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Domain-Specific BSIF Codes

Annotation Tool

Avalilable at
https://github.com/
danielmoreira/iris-examination

Paper.js
Web-browser drawing library.

Your decision (change),

SAME PERSON (CERTAIN) NEXT

lease annotate 2-5 matching or non-matching regions

Y UNIVERSITY OF

"5/ NOTRE DAME




Domain-Specific BSIF Codes

Eye Tracker
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Application

Either original or
domain specific.

Normalized iris image R Fll‘te'rs'.

d filtering results S 1
A S e~y
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Domain-Specific BSIF Codes

Czajka et al.

Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition

WACV 2019
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Results
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Original BSIF Filters

S
CSINK

Iris-based BSIF

d-prime

Random Natural
Patches

Random lIris
Patches

Domain-Specific BSIF Codes

Eye-tracked Iris
Patches

Manual Iris
Patches

Czajka et al.

Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition

WACV 2019
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S’up Next?

Iris Recognition
Coding Class
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