Iris Recognition II CSE 40537/60537 Biometrics

Today you will...

Get to know Iris acquisition and enhancement.

On-line

https://www.youtube.com/watch?v=BYN4oF_bi4c

Schiphol Airport

Off-line

It depends on the resolution and angle of capture.

GIFsBOOM.ne

Iris Capture Visible light.

Can you see the iris texture (crypts, furrows, and collarette)?

Dr. Adam Czajka

Iris Capture Visible light.

Can you see the iris texture (crypts, furrows, and collarette)?

Iris Capture Visible light.

Melanin poses a challenge to visible-light iris recognition.

Iris Capture Solution: near-infrared (NIR) light.

Typical wavelengths used by sensors: 750-890 nm.

visible light

Standards

Eye Safety IEC 60825-1:1993 (+ addendum A1:1997 and A2:2001), ANSI RP-27.1-96

Maximum Permissible Exposure (MI $MPE < 0.1 \times MPE_{max}$

> eye damage due to light exposure

Standards

Image Quality ISO/IEC 19794-6 and ISO/IEC 29794-6

wavelength: 700-900 nm resolution: \geq 20 lines per iris diameter non-occluded iris area: \geq 70% gray scale: \geq 6 bits

typical resolution: 640 x 480 pixels

Sensors With cooperation.

Jim Wilson / The New York Times

LG Iris Access 3000

Dr. Adam Czajka

CrossMatch

IG-AD100

Dr. Adam Czajka

Sensors With almost no cooperation.

Multiple-Resolution Cameras

Wide-angle camera for face detection. Narrow-angle cameras for iris capture. https://www.youtube.com/watch?v=bolNgCrCZW0

Sarnoff Corp., Iris-on-the-move Gate

Sensors With almost no cooperation.

Deformable Mirrors

Similar to astronomical telescopes. Fast adaptation at presentation time. Capture at 1.5-2.5m of distance.

Dr. Adam Czajka

AOptix Insight SD, 2008

Sensors Current trend: miniaturization.

Example 1 Android-based *Fidelys* smartwatch.

linuxgizmos.com/ worlds-first-iris-recognition-smartwatch-runs-android

Sensors Current trend: miniaturization.

Example 2 IriShield USB

See demonstration.

https://urvashicomputers.com/irishieldmk-2120-series/

Challenges

Deformations and Occlusions

- Eyelids and eyelashes.
- Specular reflections.
- Pupil dilation.
- Head movement, off-axis gaze.

Challenges

User Cooperation

It is easy for people to protect their irises from capture.

Challenges

Diseases

- E.g., cataracts, conjunctivitis.
- Is iris visible?
- Is the disease contagious?

commons.wikimedia.org

E.g., cataracts.

Challenges

Attacks

Obfuscation with texturized contact lenses.

Presentation attack (see demonstration).

Jain, Ross, and Nadakumar Introduction to Biometrics Springer Books, 2011

Steps

Segmentation

Keep only useful information (iris texture).

Normalization

Make different captures of the same iris look as similar as possible.

Segmentation (1/2)

Iris and Pupil Localization Localize limbus and pupillary boundaries.

Segmentation (1/2)

Iris and Pupil Localization Localize limbus and pupillary boundaries.

Eyelid, Eyelash, and Specular Reflection Detection Deal with iris texture occlusions.

Segmentation (1/2)

Iris and Pupil Localization Localize limbus and pupillary boundaries.

Eyelid, Eyelash, and Specular Reflection Detection Deal with iris texture occlusions.

Segmentation (1/2)

Iris and Pupil Localization Method 1: Integral-differential operator

Objective: Find (r, x_0, y_0) of **limbus** and (r, x_0, y_0) of **pupillary** boundaries.

Segmentation (1/2)

Iris and Pupil Localization Method 1: Integral-differential operator

Strategy: Try various values for (r, x_0, y_0) .

Segmentation (1/2)

Iris and Pupil Localization Method 1: Integral-differential operator

Strategy: Try various values for (r, x_0, y_0) .

Segmentation (1/2)

Iris and Pupil Localization Method 1: Integral-differential operator

J. Daugman *How Iris Recognition Works* IEEE TCSVT, 2004

result example

Segmentation (1/2)

Iris and Pupil Localization Method 2: Image processing ending with Hough circle transform.

https://github.com/olesiamidiana/iris-recognition-py

1.grayscale

2. inverted

https://github.com/olesiamidiana/iris-recognition-py

3. median blur

4. Canny edge detector

5. Hough circle transform

Segmentation (1/2)

Eyelids, eyelashes, specular highlights

Fit of parabolic curves for eyelids. Active contours (curve evolution) to avoid eyelashes.

Fit of elliptical curves for specular highlights. Machine learning from annotated examples.

Gutfeter *Active contours for iris segmentation.* BSc Thesis, WUT, 2010

Segmentation (1/2)

Iris Localization

Convolutional Neural Networks (machine learning trained with annotation examples).

Kerrigan et al. *Iris Recognition with Image Segmentation Employing Retrained Off-the-Shelf Deep Neural Networks* https://arxiv.org/abs/1901.01028, 2019

Segmentation (1/2)

Manual Segmentation Next slide: iris recognition tool that we have developed at Notre Dame.

	TSHEPII	
program	1	
		Brightness
		-1.0
		0.0

Contrast

Sharpening

1.0

0.0

0.0

0.0

							Segment iris			
.0		1.0					3.0			
	1x	1.0								
							Manual Annotation			
tch	ed		0	+	out of	0	Annotate			
ma	tched	-	1	+	out of	0	📃 🔲 Matching Regions 🛛 📕 🗌 Non-Matching Regions			
tch	ed		0	+	out of	0				
ma	tched		1	+	out of	0	Show Matching Regions			
		U	Indo I	ast r	removal					
							Global match score			

Normalization (2/2)

source

Normalization (2/2)

source

Normalization (2/2)

source

Normalization (2/2)

source

Limitations

Segmentation

Pupil and iris are not concentric (pupils are slightly shifted to the nasal corner). They are not perfectly round.

coloboma condition

Dr. Adam Czajka

Dr. Adam Czajka

Limitations

Normalization

Forcing circular models may lead to poor mapping.

John Daugman *Evolving Method in Iris Recognition* BTAS, 2012

) F

Iris Description and Matching

Acknowledgments

https://engineering.nd.edu/profiles/aczajka https://www.wjscheirer.com/

- This material is heavily based on
- Dr. Adam Czajka's and Dr. Walter Scheirer's courses.
- Thank you, professors, for kindly allowing me to use your material.

