Face Recognition III CSE 40537/60537 Biometrics

Today you will...

Get to know Face description and matching.

Face Recognition

Face Recognition

Focus

2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Feature Extraction

Focus 2D-appearance-based methods.

Types Handcrafted features from **Computer Vision.**

Data-driven learned features from Machine Learning.

Feature Extraction

using

recognition

race

Déniz et al

attern recognition letters, 2011 المنافعة 2011

Source: Domingo Mery

Handcrafted An expert designs what and how facial regions should be used.

Handcrafted Features

Examples Based on Gabor filters, interest points (e.g., SIFT¹, SURF², HOG³), or texture descriptors (e.g., LBP⁴).

- 1 Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
- 2 Bay et al. SURF: Speeded up robust features. ECCV, 2006.
- 3 Dalal and Triggs. Histograms of oriented gradients for human detection. CVPR 2005.
- 4 Ojala et al. Performance evaluation of texture measures(...). ICPR, 1994.

Feature Extraction

Geng and Jiang. SIFT features for face recognition. ICCSIT, 2009.

Local Binary Patterns

Selected Solution Local Binary Patterns to describe face texture.

Next slides provided by Dr. Domingo Mery. (http://domingomery.ing.puc.cl/)

LBP pipeline

Source: Domingo Mery

> LBP descriptors are calculated in image sub-regions (cells)

 Number and size of cells cannot be arbitrary (note space-scale considerations)

Histogram calculation

Normalization

Concatenation

example cell

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: < 1: ≥

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: < 1: ≥

0	2	

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: < 1: ≥

0	1	

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: < 1: ≥

0	1	1

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: <

1: ≥

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: <

1: ≥

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: <

1: ≥

0 1 1 0 0 1 0

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: <

1: ≥

0 1 1 1 0 1 1 0

Histogram calculation

Normalization

Concatenation

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
1		0
1	1	0

Histogram calculation

Normalization

Concatenation

= 0 + 2 + 4 + 0 + 0 + 32 + 64 + 128 = 230

Source: Domingo Mery

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

0: < 1: ≥

0	1	1
1		0
1	1	0

Histogram calculation

Normalization

Concatenation

4

= 0 + 2 + 4 + 0 + 0 + 32 + 64 + 128 = 230

Source: Domingo Mery

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

4	6	9
9	6	4
9	6	2

 0
 1
 1

 1
 0

 1
 1
 0

0: <

1: ≥

Histogram calculation

230		

= 0 + 2 + 4 + 0 + 0 + 32 + 64 + 128 = 230

Source: Domingo Mery

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

6	9	6
6	4	9
6	2	2

0: < 1: ≥

Histogram calculation

230	?		

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: <

1: ≥

4	6	9
9	6	4
9	6	2

0 1 1 1 0 1 1 0

Histogram calculation

230	207		

= 1 + 2 + 4 + 8 + 64 + 128 = 207

Source: Domingo Mery

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

230	207	?	

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

0: <

1: ≥

9	6	4
4	9	9
2	2	9

1	0	0
0		1
0	0	1

Histogram calculation

230	207	25	

= 1 + 8 + 16 = 25

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

230	207	25	168	

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

230	207	25	168	
243				

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

230	207	25	168	
243	255			

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

230	207	25	168	
243	255	255		

Cell coding

Mapping

4	6	9	6	4	6
9	6	4	9	9	9
9	6	2	2	9	2
10	10	10	10	10	10

Histogram calculation

230	207	25	168	
243	255	255	119	

Cell coding

Mapping

Note on neighborhood definition

Histogram calculation

- Original algorithm uses 3x3 pixel neighborhood
- Further extensions lacksquare(Ojala, 2002) introduced arbitrary neighborhood with interpolation

Image source: http://whatwhen-how.com/facerecognition/ local-representation-offacial-features-face-imagemodeling-andrepresentation-facerecognition-part-1/

Division nto N cells

Cell coding

Mapping

Uniform pattern: contains at most two bitwise transitions (U) from 0 to 1 (or vice versa) when the bit pattern is traversed circularly

Division into *N* cells Cell coding Mapping

Uniform U = 0 Datterns U = 2

Uniform patterns account for almost 90% of all patterns.

Histogram calculation

Non-uniform patterns

patterns

2 + 56 = 58 Uniform patterns

{58}

40

Source: Domingo Mery

Division nto N cells

Cell coding

Mapping

Result of cell code mapping

4	6	9	6	4	6	
9	6	4	9	9	9	
9	6	2	2	9	2	
10	10	10	10	10	10	

Cell

Normalization

Coded cell

Mapped cell

Mapped cell

• Similar textures have similar histograms.

Cell coding

Mapping

Division into N cells

- Normalization of histograms makes LBP descriptors size-invariant
- Concatenation of all cell histograms provides the image LPB descriptor

59 numbers 59 number **Jululul Jululul**cell 1 featurescell 2 featu

Histogram calculation

Normalization Concatenation

TS	59 numbers
••• res	cell <i>N</i> features

Source: Domingo Mery

43

44

Source: Domingo Mery

Source: Domingo Mery

45

Source: Domingo Mery

46

Source: Domingo Mery

In the training set there are k classes.

For each class we have *n* training images.

Each image in partitioned into 16 cells.

In each cell we extract LBP features.

- In this example there are 40 classes with 9 images in each class.

A face is described using a feature of $16 \times 59 = 944$ elements

Training Data

Table with:

9x40 = 360 rows

and

16 x 59 = 944 columns

	•••	
	• • •	
	•	
111. 111.	•••	
	• • •	
	•	
lul. Iul.	•••	
	•••	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Subject	1		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		ļ. ļ.	• • •	
Subject 20 $\downarrow \downarrow $			• • •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Subject 2	20	•	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		ļ. ļ. ļ.	• • •	
Subject 40 Subject 40 Subje			• • •	
	Subject 4	10	•	
		ļ. ļ. ļ.	• • •	
			• • •	ļ

1.11111. 1111.1111. 1111.1111.

11.11111. 1111.1111. 1111.1111.

TESTING

Who is this subject?

• • •

Source: Domingo Mery

Face Recognition

Face Recognition

LBP for face recognition (Feature Matching)

Subject '	1		
		• • •	
		• • •	ļ
Subject 2	0	•	
		•••	
		• • •	
Subject 4	0	•	
		•••	
		• • •	Ţ

UULUUU, UULUUU, !

TESTING

Who is this subject?

•••

Source: Domingo Mery

LBP for face recognition (Feature Matching)

Subject 7	1		
		•••	
		• • •]
Subject 2	0	•	
		•••	
		•••]
Subject 4	10	•	
		•••	
		•••	1

Who is this subject?

Source: Domingo Mery

Face Recognition

Face Recognition

LBP for face recognition (Decision)

Subject 7	1		
		• • •	-
		• • •	_
Subject 2	.0	•	
		• • •	-
		• • •	
Subject 4	0	•	
		•••	-
		• • •	

128 128 91 Who is this subject?

Focus

2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Feature Extraction

Focus 2D-appearance-based methods.

Types

Handcrafted features from Computer Vision.

Data-driven learned features from Machine Learning.

Feature Extraction

60

Deep Convolutional Neural Networks

Feature Extraction

Deep Convolutional Neural Networks

From pixels to classification decision.

Hierarchy of feature extractors.

Each layer extracts features from previous layer.

Feature Extraction

Face Recognition

Neural networks learn how to do all fo these.

Deep Convolutional Neural Networks

Convolutional Layers E.g., layers 1 and 2. Feature extractors are convolutional operations which are performed on the output of the previous layer.

Deep Convolutional Neural Networks

Fully Connected Layer

E.g., layer 3.

It performs the classification, presenting one score output for each class (identity, in the case of Biometrics).

Deep Convolutional Neural Networks

How deep can they be? "Deep" refers to the number of layers.

E.g., VGG16 Simonyan and Zisserman *Very Deep Convolutional Networks for Large-Scale Image Recognition*

Deep Learning

Training Labeled examples (e.g., faces and expected IDs) are used to teach the network to classify them correctly.

Deep Learning

Training

Back-propagation is used to fix the weights of the convolutions within the network.

Deep Learning

Present various examples of each class and perform forward-, backpropagation.

How good can it be?

E.g., DeepFace (Facebook) Taigman *et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification* CVPR, 2014

false positive rate

Interesting Variations

Interesting Variations

Remove fully connected layer and use last convolutional layers as a feature descriptor.

Interesting Variations

Remove fully connected layer and use last convolutional layers as a feature descriptor.

Interesting Variations

Train the network in a way that feature vectors of the same class have small distance, while feature vectors from different classes have large distance.

ID 1

 $d(V_1, V_2) < d(V_1, V_3)$ $d(V_1, V_2) < d(V_2, V_3)$

This is called triplet-loss-based learning.

Schroff et al. Facenet: A unified embedding for face recognition and clustering. **CVPR 2015**

Problems

Accountability

You must understand what the network is using to classify samples.

> You must avoid this in the case of Face Recognition!

How surgical skin markings faked out a deep learning #Al neural net-- a commercially approved product for algorithm-aided melanoma diagnosis. Highly instructive. Machines can be dumb.

jamanetwork.com/journals/jamad... @JAMADerm by @UniHeidelberg

Problems

Bias

What happens if you train the network only with one type of faces (e.g., with only young caucasians)?

Problems

Avoid Bias Diversify the training dataset.

There are synthetic ways to do it... (FaceGen demonstration)

Face Recognition Coding Class Please bring your computers.

S'up Next?

Suggested Assignment Datasets

Yale (1997) and Yale B (extension) 10 subjects, 9 poses, 64 different illumination conditions.

Available at:

- http://vision.ucsd.edu/content/yaleface-database
- http://vision.ucsd.edu/~iskwak/ ExtYaleDatabase/ExtYaleB.html

Acknowledgments

https://engineering.nd.edu/profiles/aczajka https://www.wjscheirer.com/

- This material is heavily based on
- Dr. Adam Czajka's and Dr. Walter Scheirer's courses.
- Thank you, professors, for kindly allowing me to use your material.

