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Get to know 
Face description and matching.
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Focus 
2D-appearance-based 
methods. 
 
Types 
Handcrafted features from 
Computer Vision. 
 
Data-driven learned features 
from Machine Learning.
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Focus 
2D-appearance-based 
methods. 
 
Types 
Handcrafted features from 
Computer Vision.  
 
Data-driven learned features 
from Machine Learning.

Handcrafted 
An expert designs what 
and how facial regions 
should be used.
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Feature Extraction
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Handcrafted Features 
 
Examples 
Based on Gabor filters, 
interest points (e.g., SIFT , 
SURF , HOG ), or texture 
descriptors (e.g., LBP ).

1

2 3

4

1 - Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004. 
2 - Bay et al. SURF: Speeded up robust features. ECCV, 2006. 
3 - Dalal and Triggs. Histograms of oriented gradients for human detection. CVPR 2005. 
4 - Ojala et al. Performance evaluation of texture measures(…). ICPR, 1994.

Geng and Jiang. 
SIFT features for face recognition.  
ICCSIT, 2009.



Local Binary Patterns
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Selected Solution 
Local Binary Patterns to describe 
face texture. 
 
 
Next slides provided by Dr. Domingo Mery. 
(http://domingomery.ing.puc.cl/)



LBP pipeline
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• LBP descriptors are 
calculated in image  
sub-regions (cells) 

• Number and size of 
cells cannot be 
arbitrary (note 
space-scale 
considerations)

example cell

cell 1

cell N

Cell coding Mapping Histogram 
calculation NormalizationDivision  

into N cells Concatenation
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Note on neighborhood 
definition

• Original algorithm uses 
3x3 pixel neighborhood  

• Further extensions 
(Ojala, 2002) introduced  
arbitrary neighborhood 
with interpolation

Image source: http://what-
when-how.com/face-
recognition/ 
local-representation-of-
facial-features-face-image-
modeling-and-
representation-face-
recognition-part-1/

Cell coding Mapping Histogram 
calculation NormalizationDivision  

into N cells Concatenation
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Uniform  
patterns

U = 0

U = 2

Uniform patterns  
account for almost  
90% of all patterns.

Cell coding Mapping Histogram 
calculation NormalizationDivision  

into N cells Concatenation
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• Each cell is represented as 59-digit LBP 
descriptor 
• Similar textures have similar histograms.

Cell coding Mapping Histogram 
calculation NormalizationDivision  

into N cells Concatenation

...
0   1     2    3                                  58

# pixels

58 46 58 58

23 0 0 58

Mapped cell
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• Normalization of 
histograms makes 
LBP descriptors 
size-invariant 
• Concatenation of all 

cell histograms 
provides the image 
LPB descriptor 

Cell coding Mapping Histogram 
calculation NormalizationDivision  

into N cells Concatenation

. . .
cell 1 featurescell 2 features cell N features

59 numbers 59 numbers 59 numbers

cell 1

cell N
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Local Binary Patterns  
Similar textures have similar histograms
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Local Binary Patterns  
Similar textures have similar histograms
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Local Binary Patterns  
Similar textures have similar histograms
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Local Binary Patterns  
Similar textures have similar histograms



In the training set there are k classes. 

For each class we have n training images.  

In this example there are 40 classes with 9 images in each class. 

Each image in partitioned into 16 cells. 

In each cell we extract LBP features.  

1
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13   14     15

. . .

A face is described using a feature of 16 x 59 = 944 elements     

LBP for face recognition
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Focus 
2D-appearance-based 
methods. 
 
Types 
Handcrafted features from 
Computer Vision.  
 
Data-driven learned features 
from Machine Learning.

Feature Extraction
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Deep Convolutional Neural Networks 

Feature Extraction

61



Deep Convolutional Neural Networks 
 
From pixels to 
classification decision. 
 
Hierarchy of feature 
extractors. 
 
Each layer extracts features 
from previous layer. 

Feature Extraction
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feature query, gallery (with IDs), 
and dissimilaritiesenhanced face, IDNeural networks learn how to do all fo these.
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Deep Convolutional Neural Networks 
 
Convolutional Layers  
E.g., layers 1 and 2. 
Feature extractors are 
convolutional operations 
which are performed on the 
output of the previous layer.

Data-Driven Face Recognition
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Deep Convolutional Neural Networks 
 
Fully Connected Layer 
E.g., layer 3. 
It performs the classification, 
presenting one score output 
for each class (identity, in the 
case of Biometrics).
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Deep Convolutional Neural Networks 
 
How deep can they be? 
“Deep” refers to the number 
of layers. 
 
E.g., VGG16 
Simonyan and Zisserman 
Very Deep Convolutional Networks 
for Large-Scale Image Recognition

66

16 to 19 convolutional layers

Data-Driven Face Recognition



Deep Learning 
 
Training 
Labeled examples 
(e.g., faces and expected IDs) 
are used to teach the network 
to classify them correctly.

67

ID 3

Random weights in the beginning.

ID 1: 0.2

ID 2: 0.7

ID 3: 0.1

Data-Driven Face Recognition



Deep Learning 
 
Training 
Back-propagation is used to 
fix the weights of the 
convolutions within the network.

68

ID 3

Weights are fixed with back-propagation.

ID 1: 0.2

ID 2: 0.7

ID 3: 0.1

Data-Driven Face Recognition



Deep Learning 
 
Present various 
examples of each 
class and perform 
forward-, back- 
propagation.

69

ID 3

Forward-, back-propagation. 

ID 1: x

ID 2: y

ID 3: z

ID 3

ID 1

ID 1

Data-Driven Face Recognition



How good can it be? 
 
E.g., DeepFace (Facebook)  
Taigman et al. 
DeepFace: Closing the Gap 
to Human-Level Performance 
in Face Verification 
CVPR, 2014
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Data-Driven Face Recognition



feature query, gallery (with IDs), 
and dissimilaritiesenhanced face, ID

Some networks focus here only.
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Interesting Variations 
 
Remove fully connected 
layer and use last 
convolutional layers as 
a feature descriptor.
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Interesting Variations 
 
Remove fully connected 
layer and use last 
convolutional layers as 
a feature descriptor.
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Data-Driven Face Recognition



Interesting Variations 
 
Train the network in a 
way that feature vectors 
of the same class have 
small distance, while 
feature vectors from 
different classes have 
large distance.

74

ID 3

ID 3

ID 1

V1

V2

V3

 d(V1, V2) < d(V1, V3)
d(V1, V2) < d(V2, V3)

Data-Driven Face Recognition

This is called 
triplet-loss-based 

learning.

Schroff et al. 
Facenet: A unified embedding for 
face recognition and clustering. 
CVPR 2015



Problems 
 
Accountability 
You must understand what 
the network is using to 
classify samples.
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Data-Driven Face Recognition
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Problems 
 
Bias 
What happens if you train 
the network only with one 
type of faces (e.g., with only 
young caucasians)? 

76

Data-Driven Face Recognition



Problems 
 
Avoid Bias 
Diversify the training dataset. 
 
There are synthetic ways to do it… 
(FaceGen demonstration) 
 

77

Data-Driven Face Recognition



S’up Next?
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Face Recognition Coding Class 
Please bring your computers.
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Suggested Assignment Datasets 
 
Yale (1997) and Yale B (extension) 
10 subjects, 9 poses, 
64 different illumination conditions. 
 
Available at:

• http://vision.ucsd.edu/content/yale-

face-database

• http://vision.ucsd.edu/~iskwak/

ExtYaleDatabase/ExtYaleB.html

S’up Next?
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