COMP 388-002/488-002 Biometrics

Daniel Moreira Fall 2025

Today we will...

Get to know Importance of Multibiometrics.

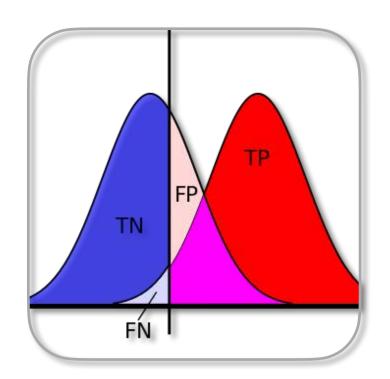
Today's Attendance

Please fill out the form

forms.gle/kgxEbSJNz9y1rvxB7

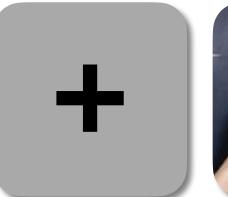
Course Overview

Content



Basics
Concepts
Metrics
Metric
implementation

Core Traits (3)
Concepts
Baseline implementation
Data collection
Evaluation
Attacks
Assignments

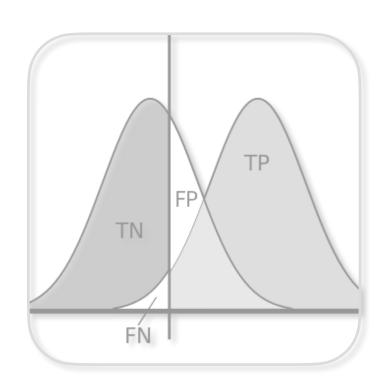


Alternative Traits and Fusion
Concepts

Invited Talks (2)
State of the art
Future work

Course Overview

Fusion (a.k.a. Multibiometrics)



Basics
Concepts
Metrics
Metric
implementation

Core Traits (3)
Concepts
Baseline implementation
Data collection
Evaluation
Attacks
Assignments

Alternative Traits and Fusion
Concepts

Invited Talks (2)
State of the art
Future work

Pick a Trait

Universality (1/8)

Does everybody have the trait?

Uniqueness (2/8)

How likely two or more individuals will present the same trait?

Permanence (3/8)

How easily does the trait change?

Measurability (4/8)

How easy is it to acquire and digitize the trait?

Pick a Trait

Acceptability (5/8)

Will individuals collaborate during data collection?

Circumvention (6/8)

How hard can the trait be forged or imitated?

Explainability (7/8)

How easy is it for the everyman to understand the trait comparison?

Performance (8/8)

How good is the trait quantitatively according to objective metrics?

Pick a Trait

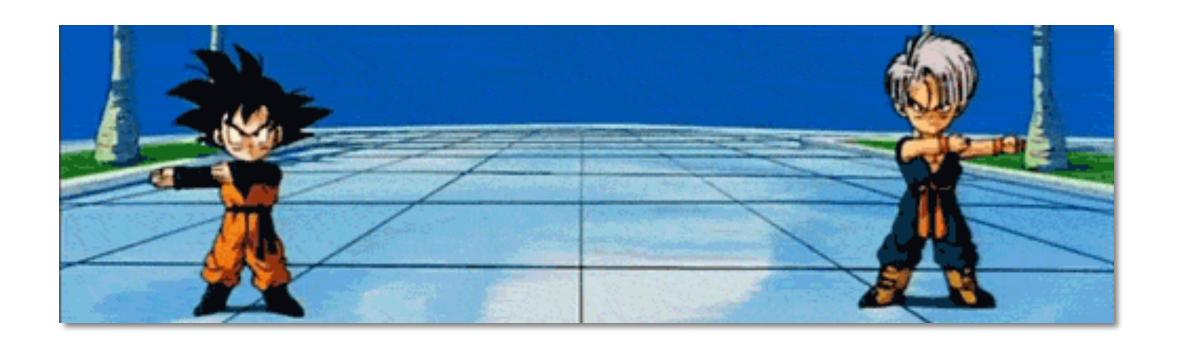
There is no silver bullet.

No trait satisfies all *concepts*.

Solution

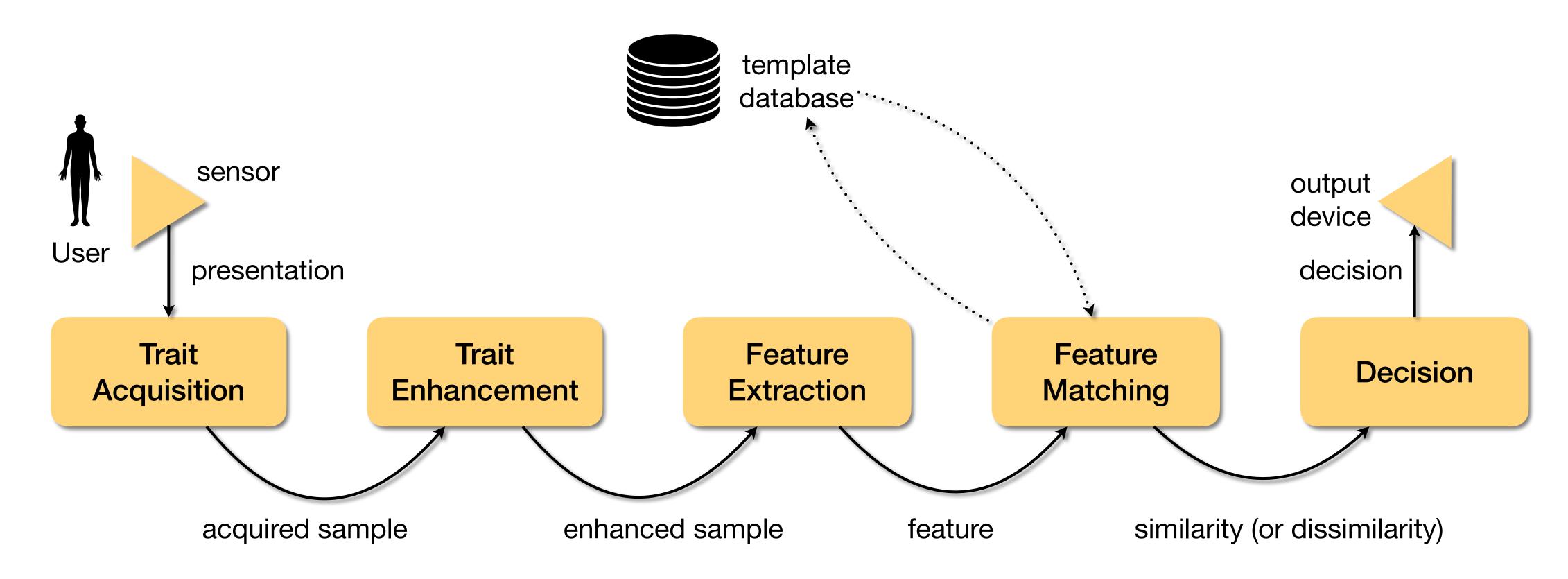
Rely on multiple traits.
Allow various presentations.
Combine results (data fusion).

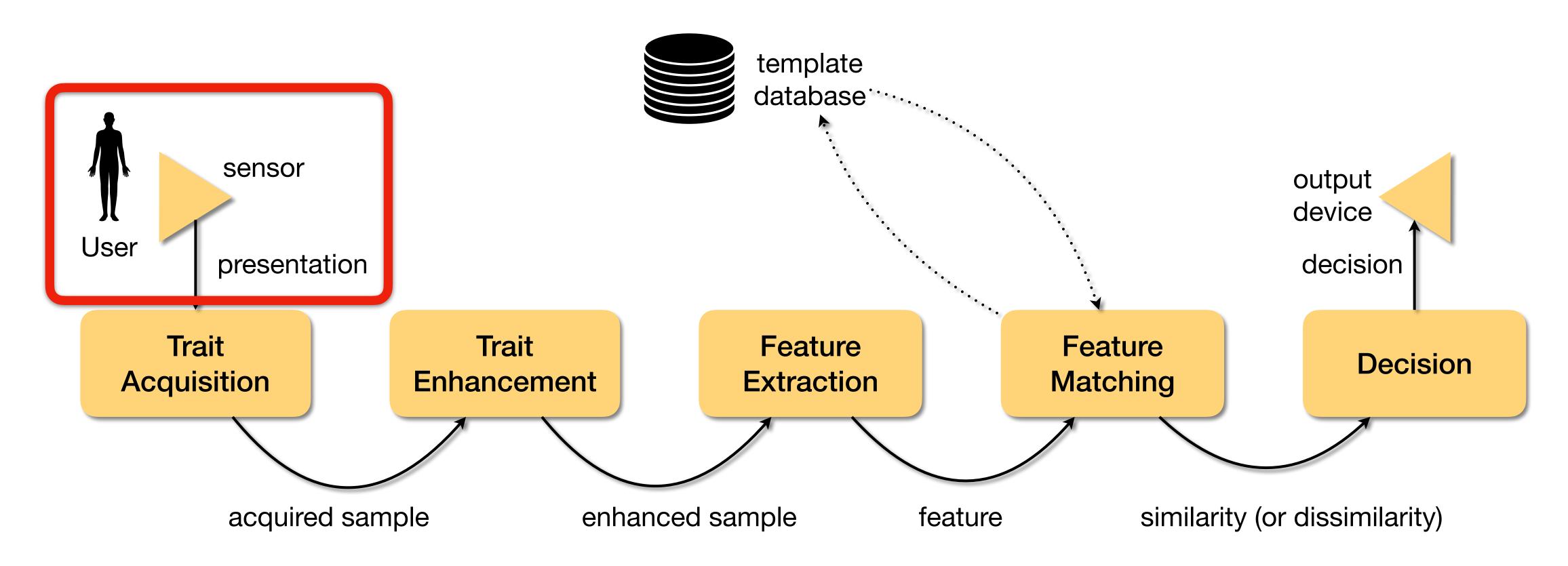
More concepts can be satisfied. System is more robust to attacks. It becomes more expensive to attack the system.

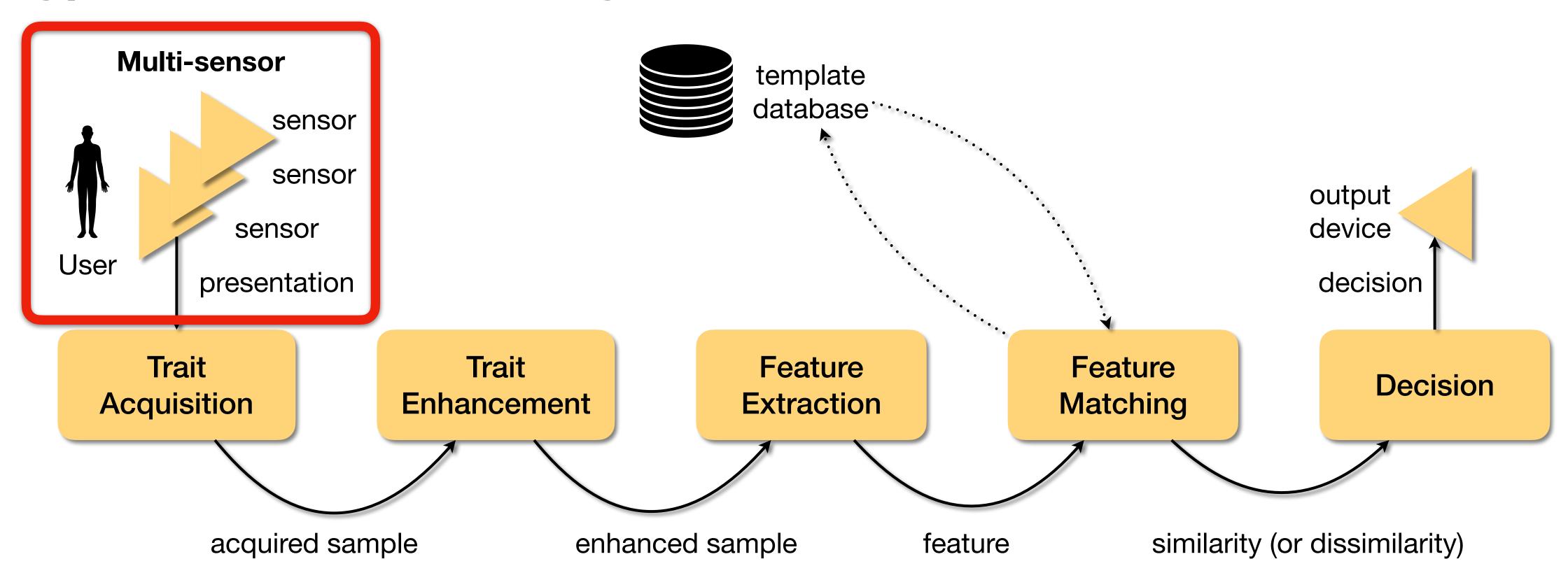


Cons

System becomes more expensive (more sensors, more software). More runtime. More complexity.







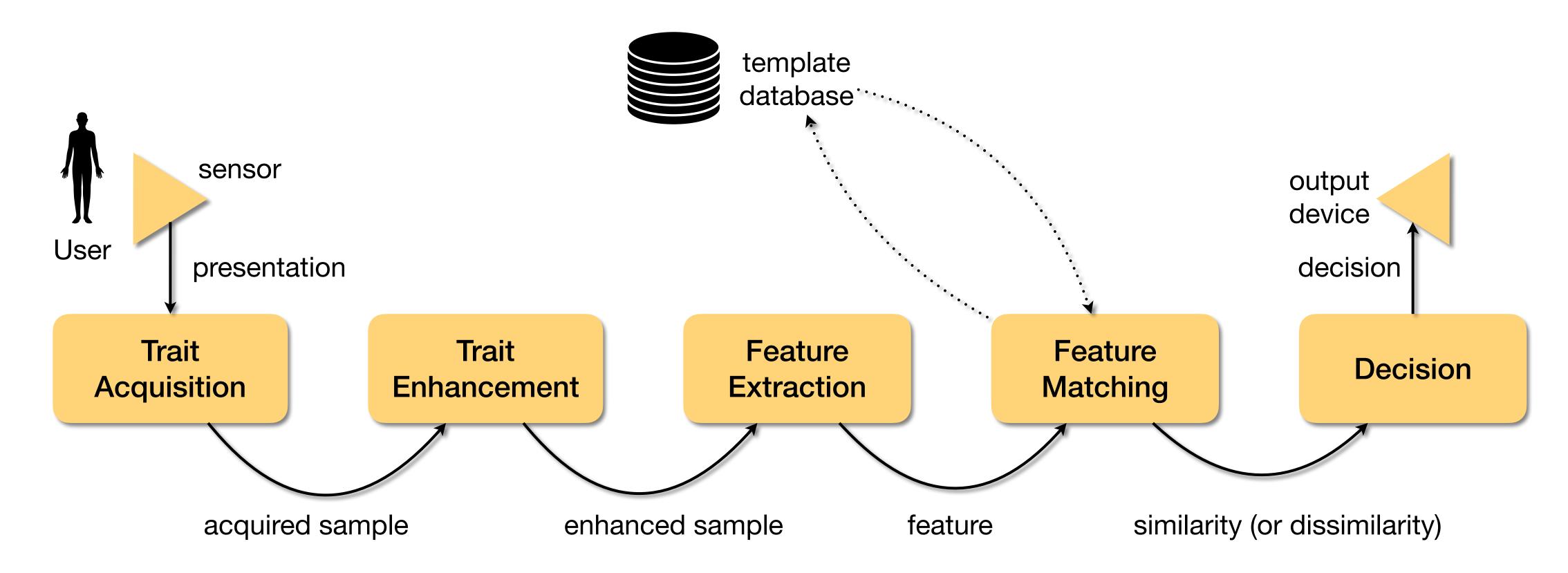
Types of Multibiometric Systems

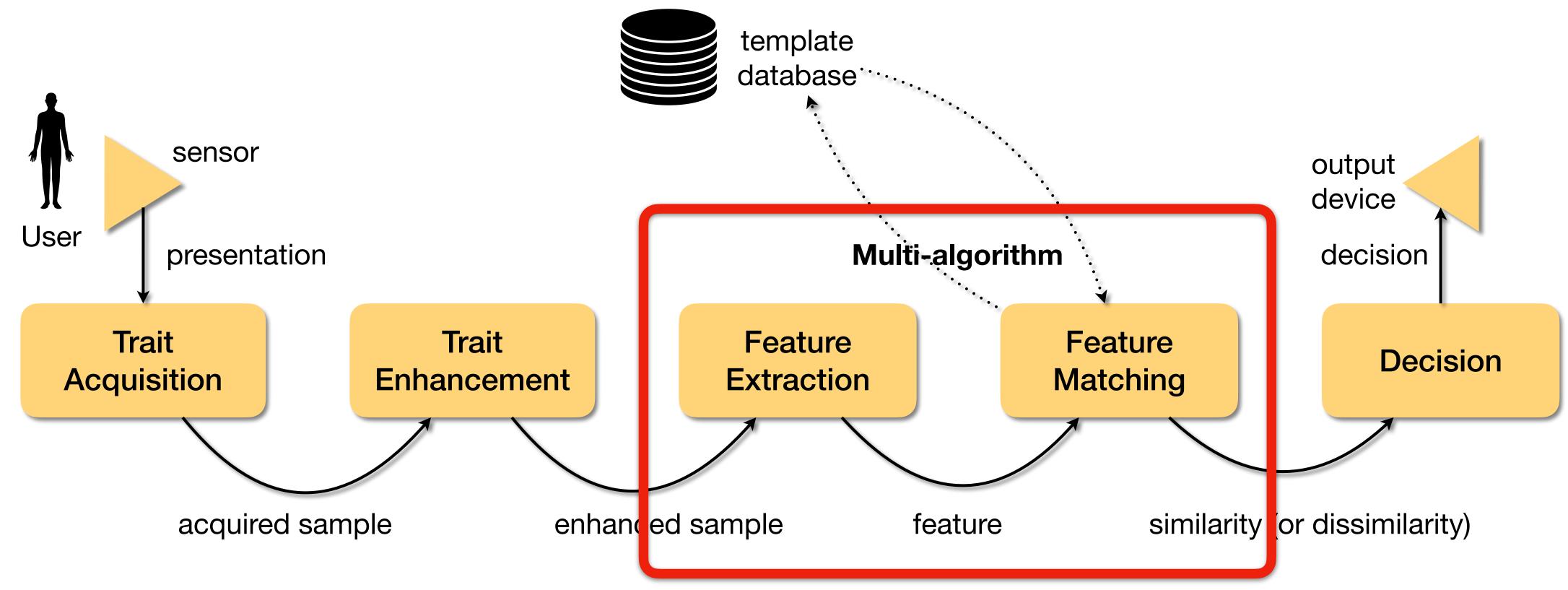
Multi-sensor Systems (1/5) Single trait, multiple sensors.

If one sensor fails, other sensors might overcome the failure.

NIR

thermal





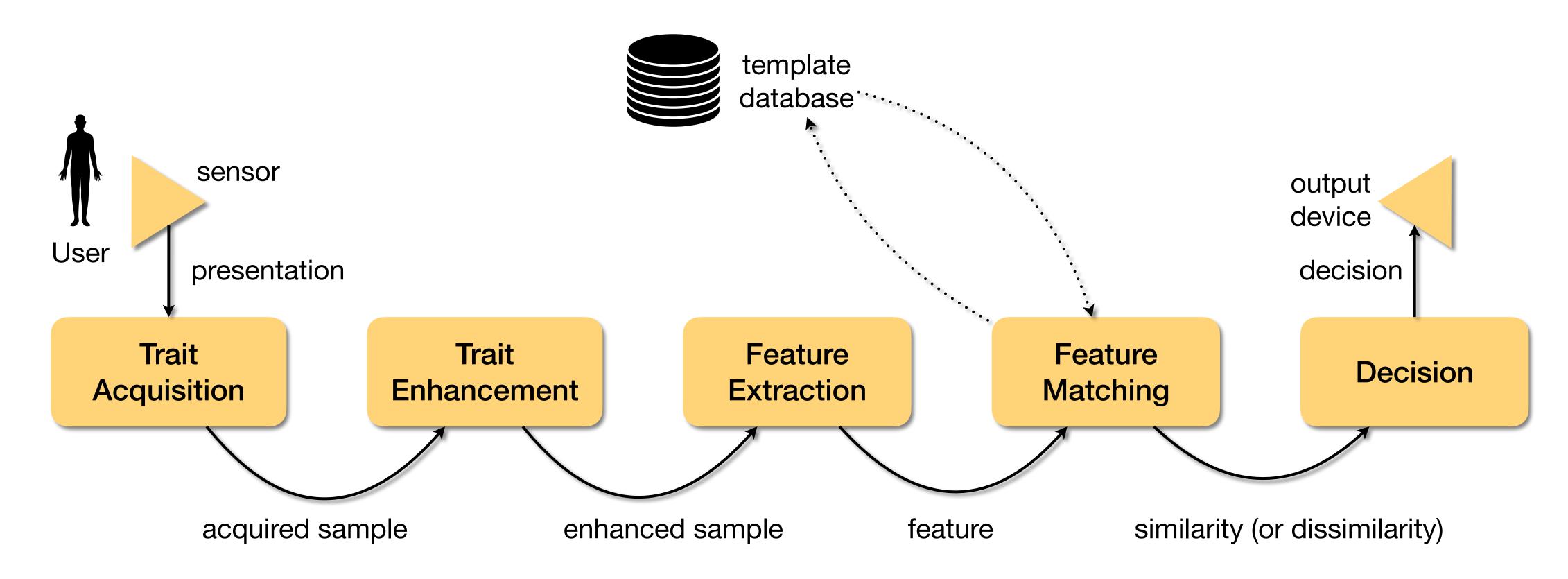
Types of Multibiometric Systems

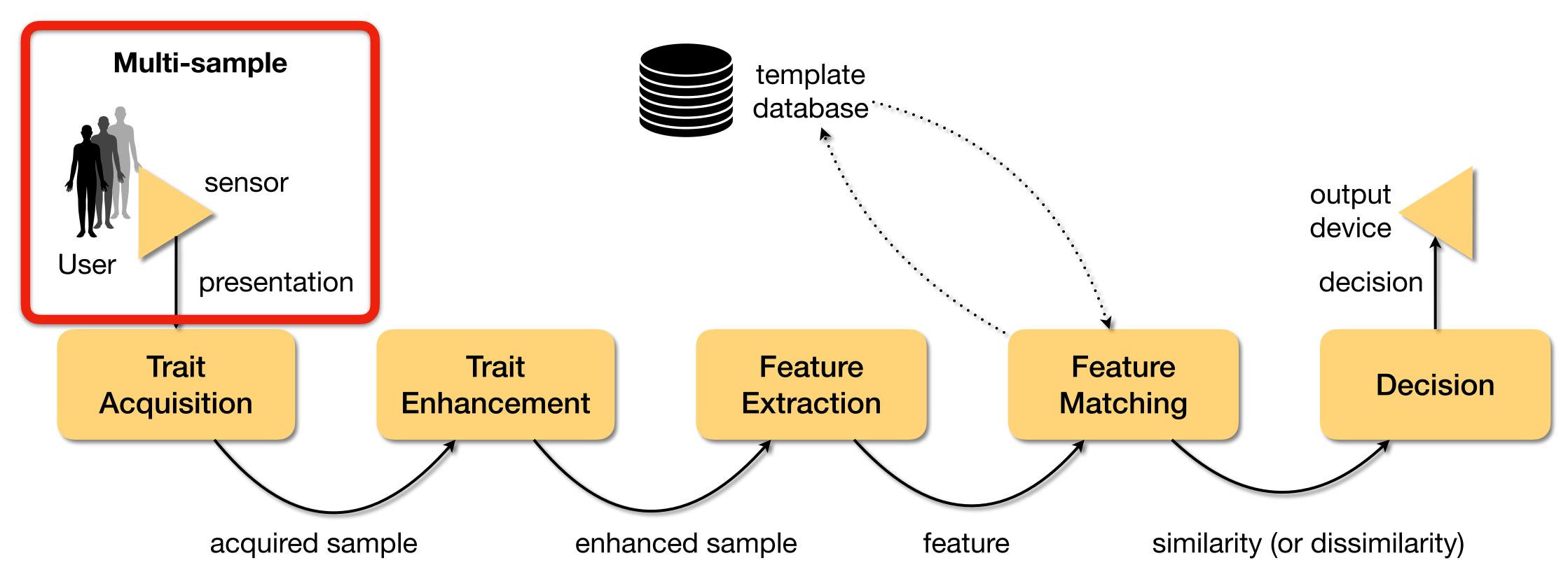
Multi-algorithm Systems (2/5) Single trait, single sensor, multiple feature extractors and matching solutions.

Complementary solutions will lead to higher accuracy in the end.

Daugman's iris code from 2D Gabor filters

Binary code from BSIF filters.





Types of Multibiometric Systems

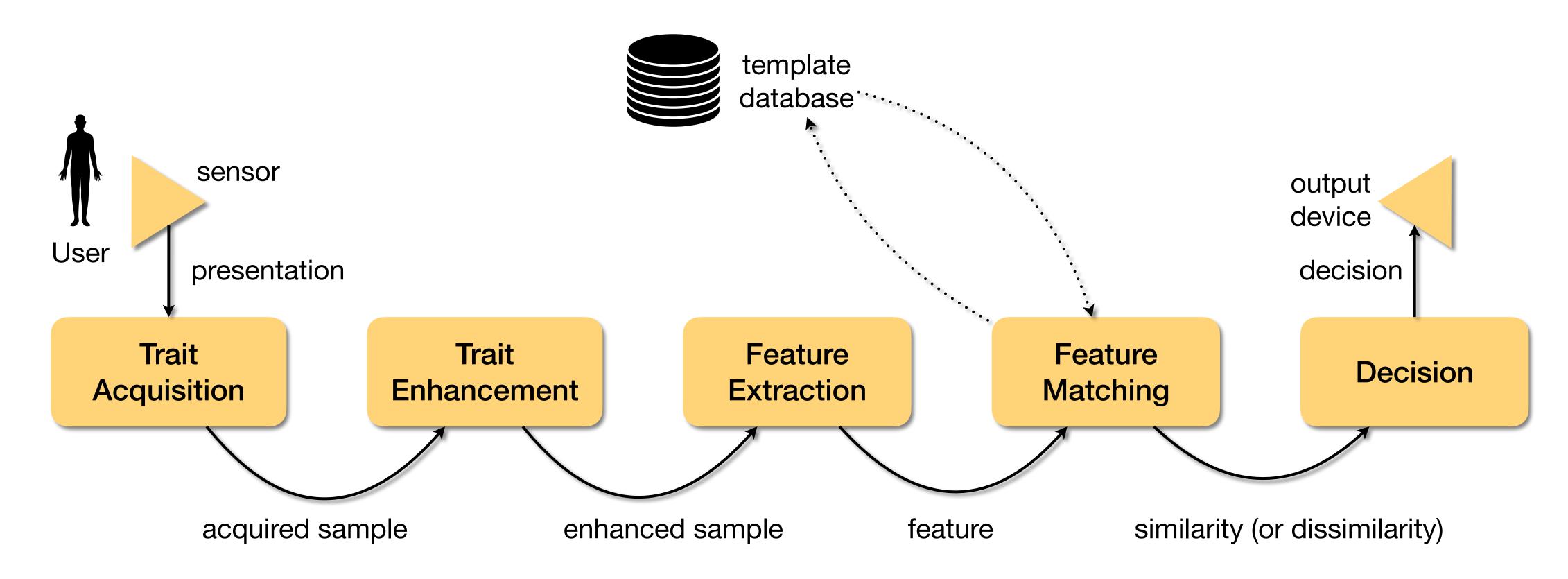
Multi-sample Systems (3/5) Single trait, single sensor, multiple presentations.

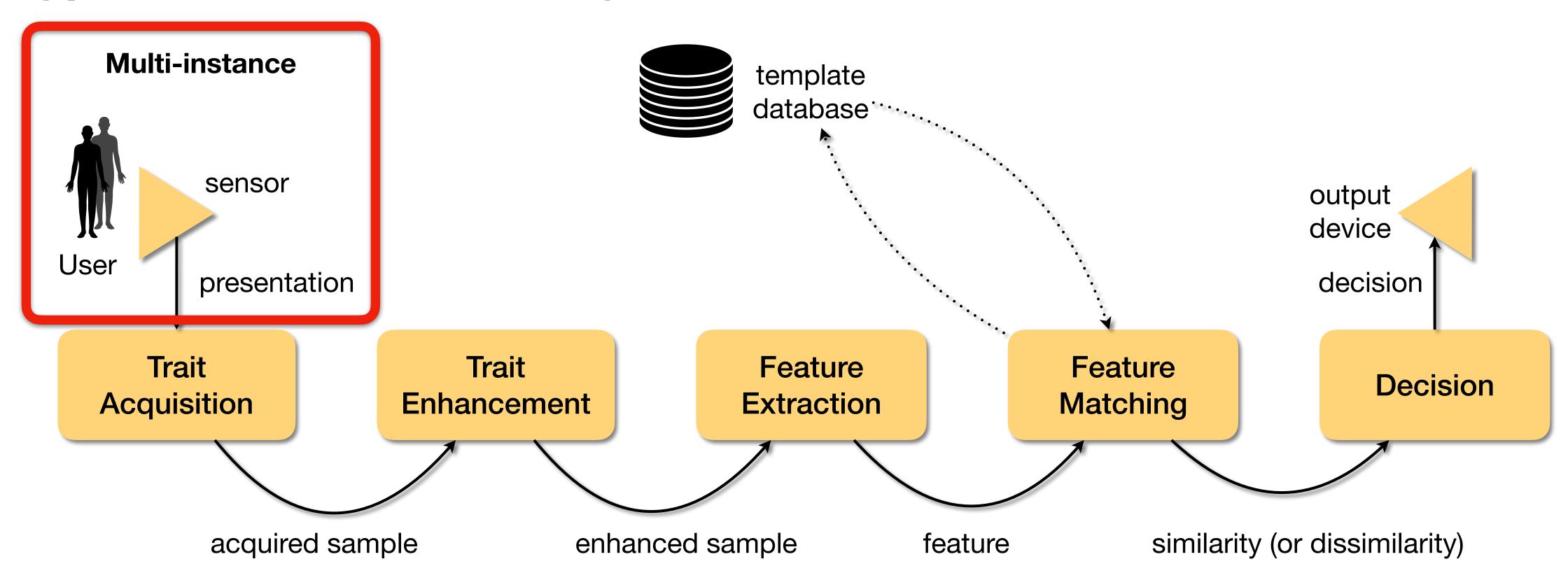
More complete representation of the trait (account for variations).

c25 c09

c22 c02 c37 c05 c29 c11
c07

Dr. Walter Scheirer





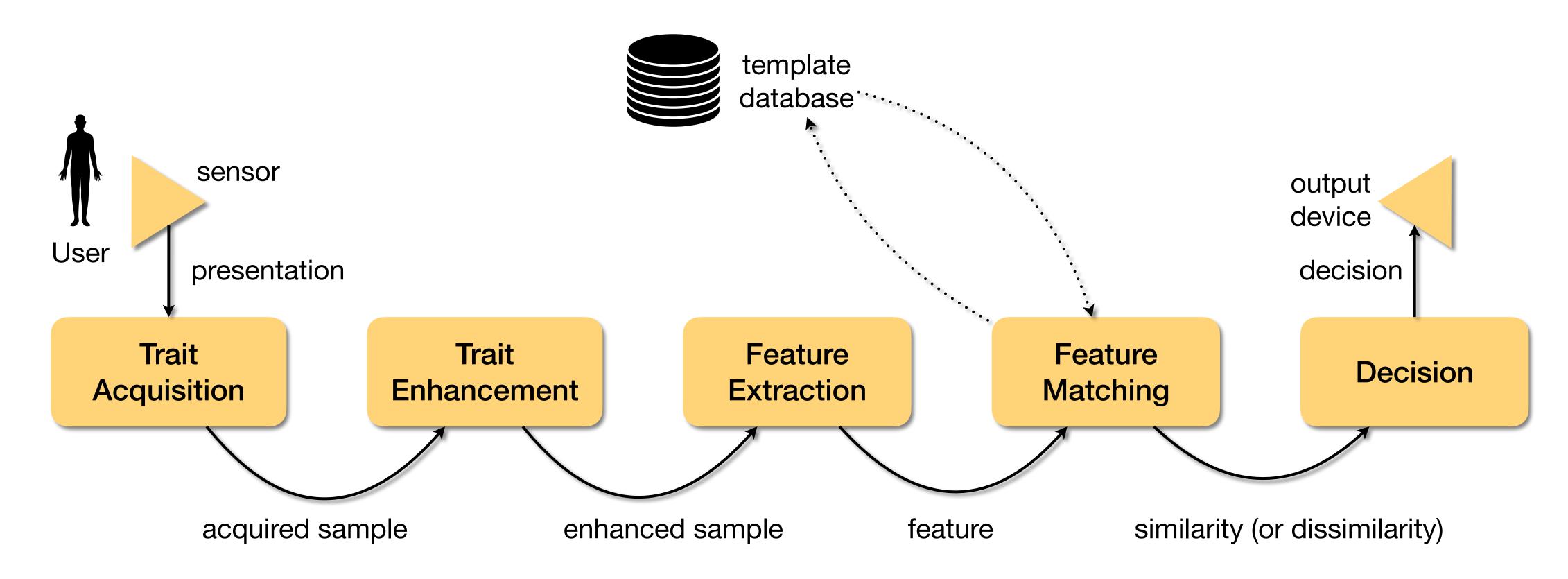
Types of Multibiometric Systems

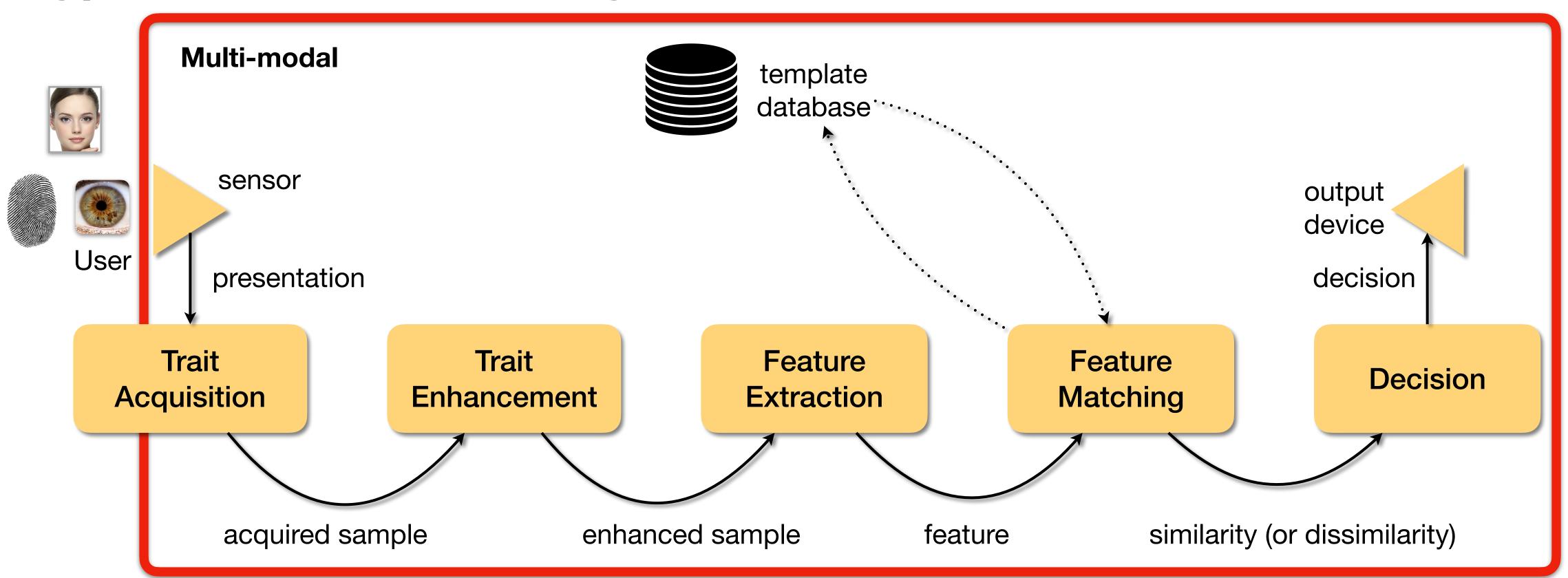
Multi-instance Systems (4/5)

Single trait, single sensor, multiple instances (e.g., right and left irises, or each one of the 10 hand fingerprints, etc.).

No need for extra sensors or extra software. Successful presentations might overcome the failed ones.

Dr. Walter Scheirer





Types of Multibiometric Systems

Multi-modal Systems (5/5)
Multiple traits (modalities).

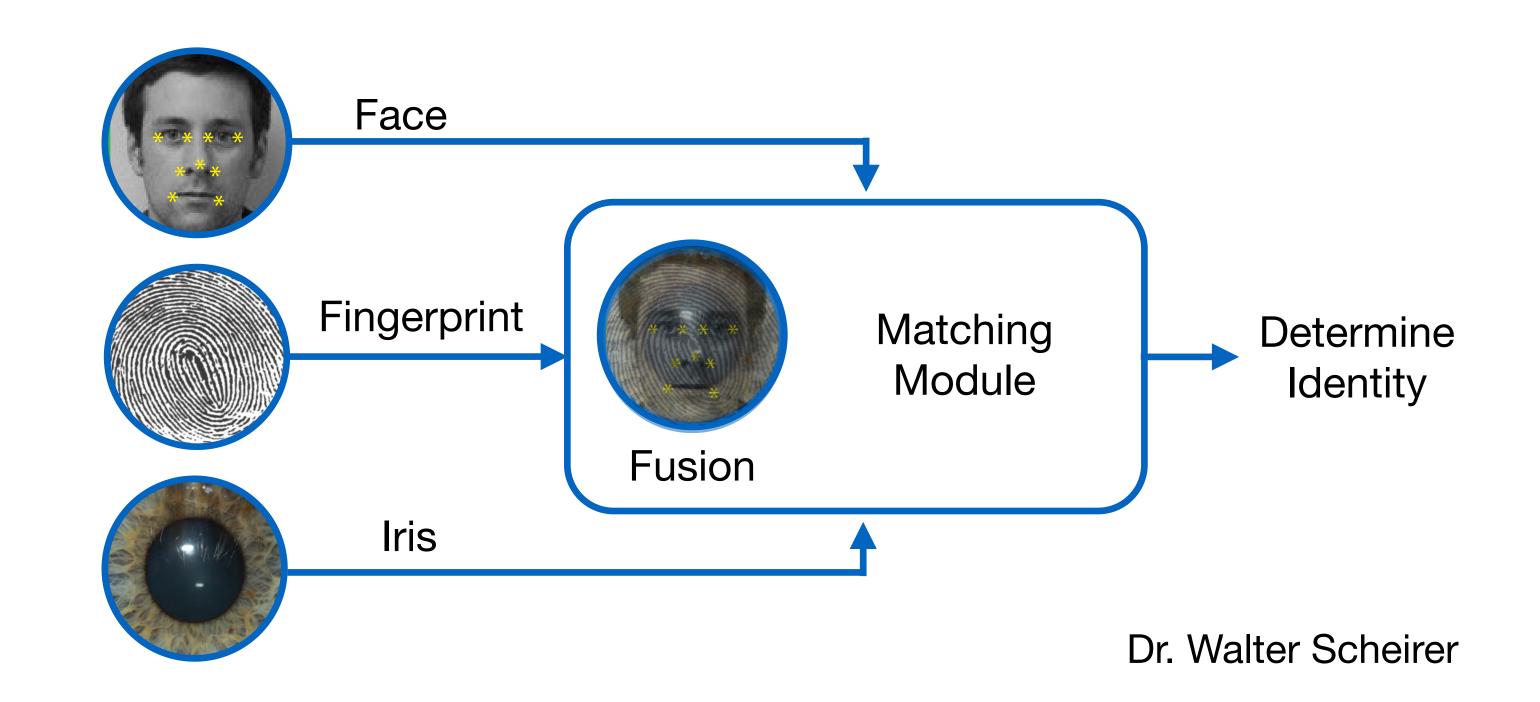
Complementary solutions will lead to higher accuracy in the end.

How to combine solutions?

Perform data fusion!

Architectures

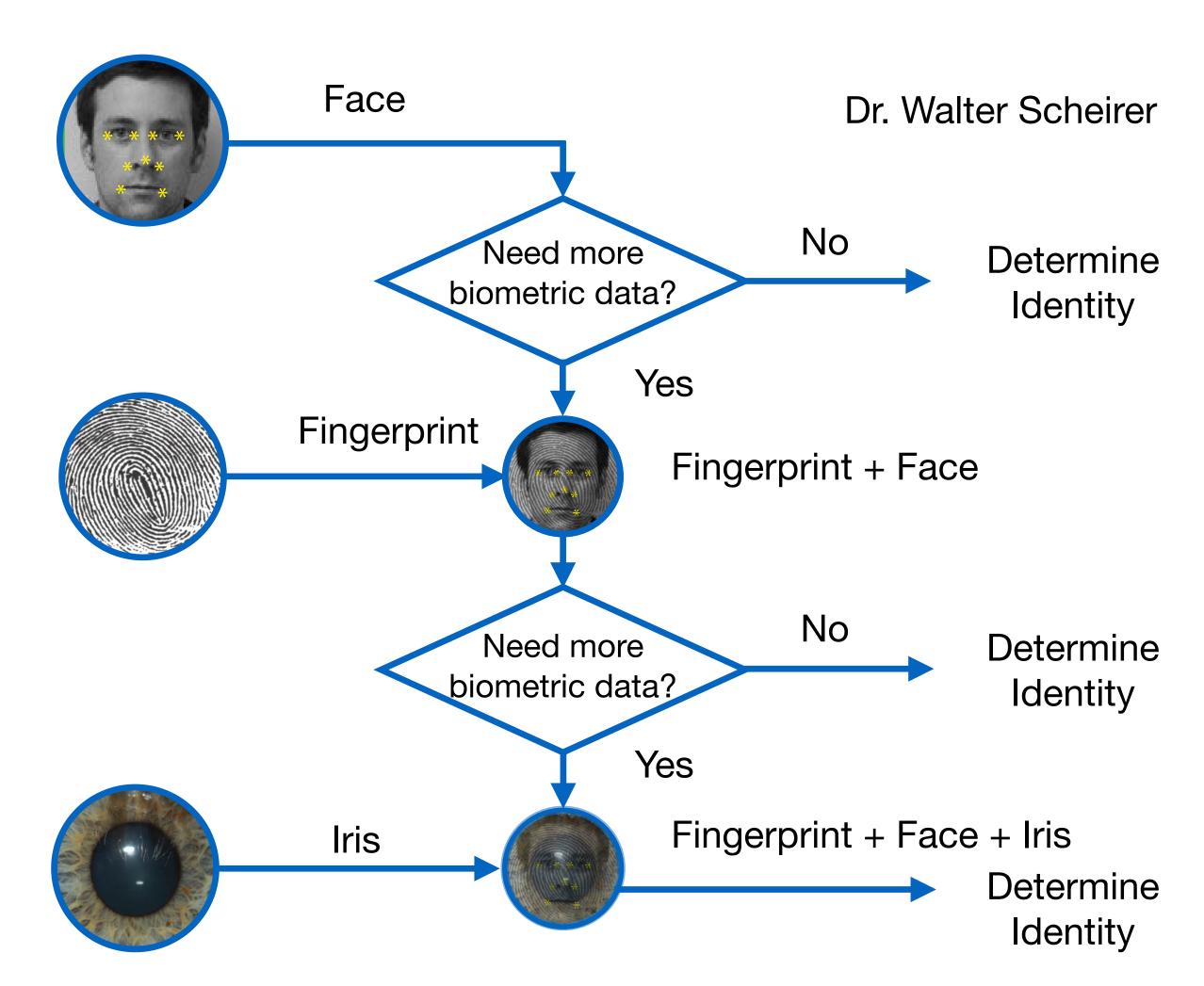
Parallel (1/2)
Evidence acquired
from multiple sources is
processed simultaneously.



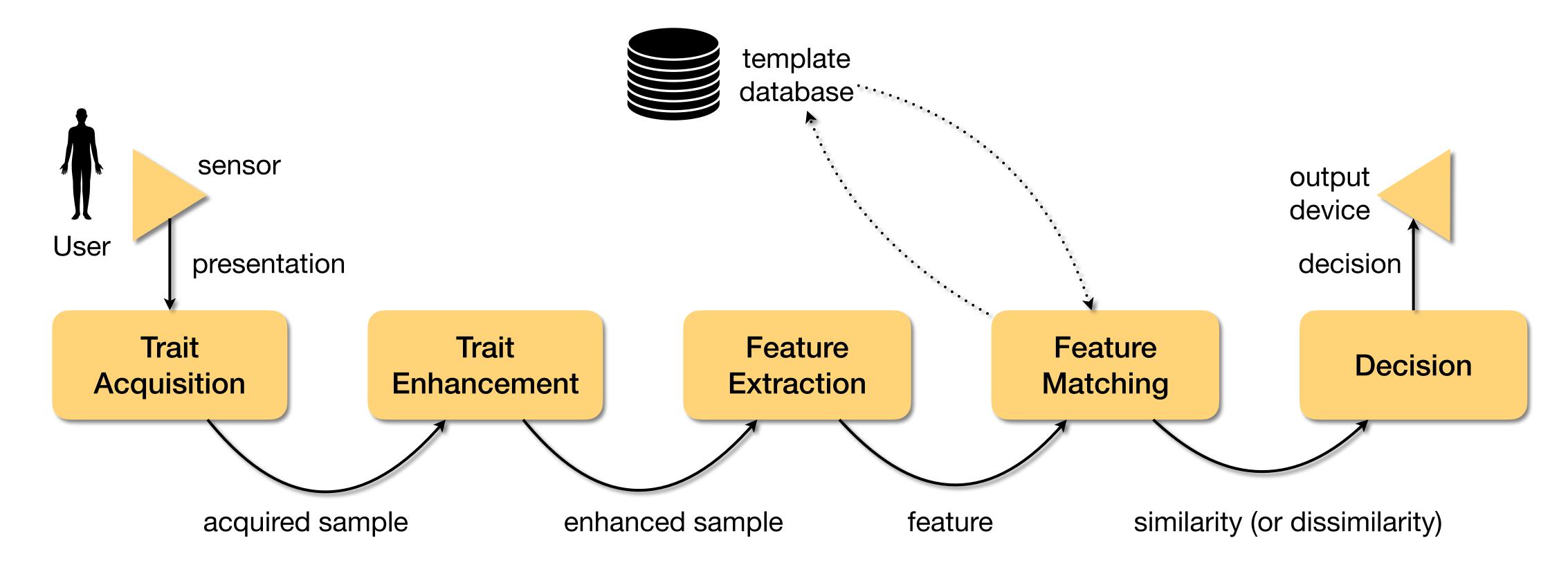
Architectures

Cascade (2/2)

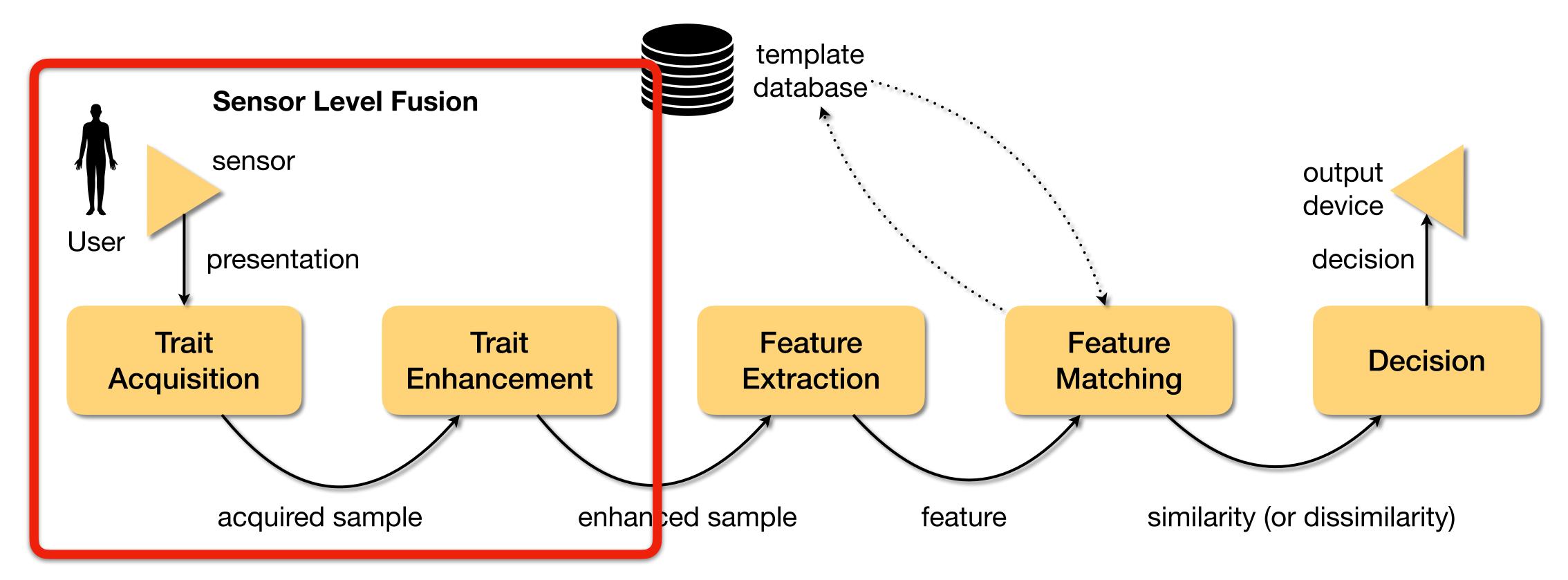
Multiple sources are processed on demand (e.g., whenever a decision score is not confident enough).



Data Fusion Levels



Data Fusion Levels



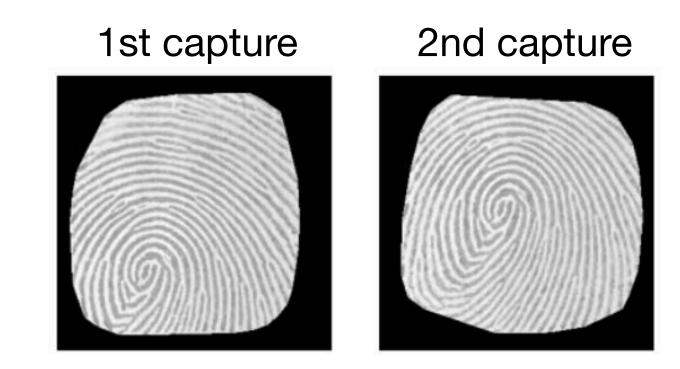
Data Fusion Levels

Sensor Level Fusion

Multiple sources of raw data
are consolidated before
feature extraction.

Example

Different captures of the same fingerprint are combined to generate sample larger than sensor capacity.



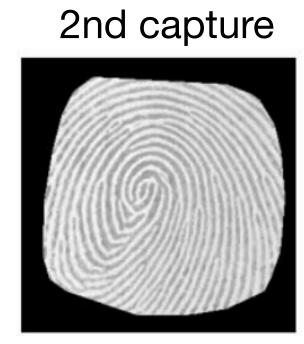
Data Fusion Levels

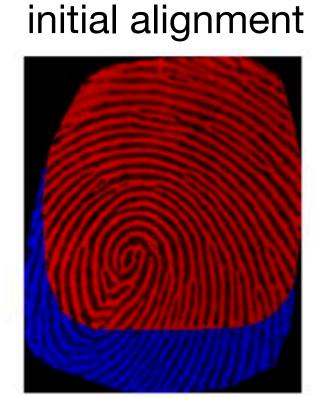
Sensor Level Fusion

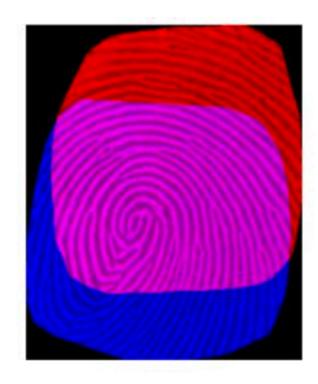
Multiple sources of raw data
are consolidated before
feature extraction.

Example

Different captures of the same fingerprint are combined to generate sample larger than sensor capacity.







final alignment

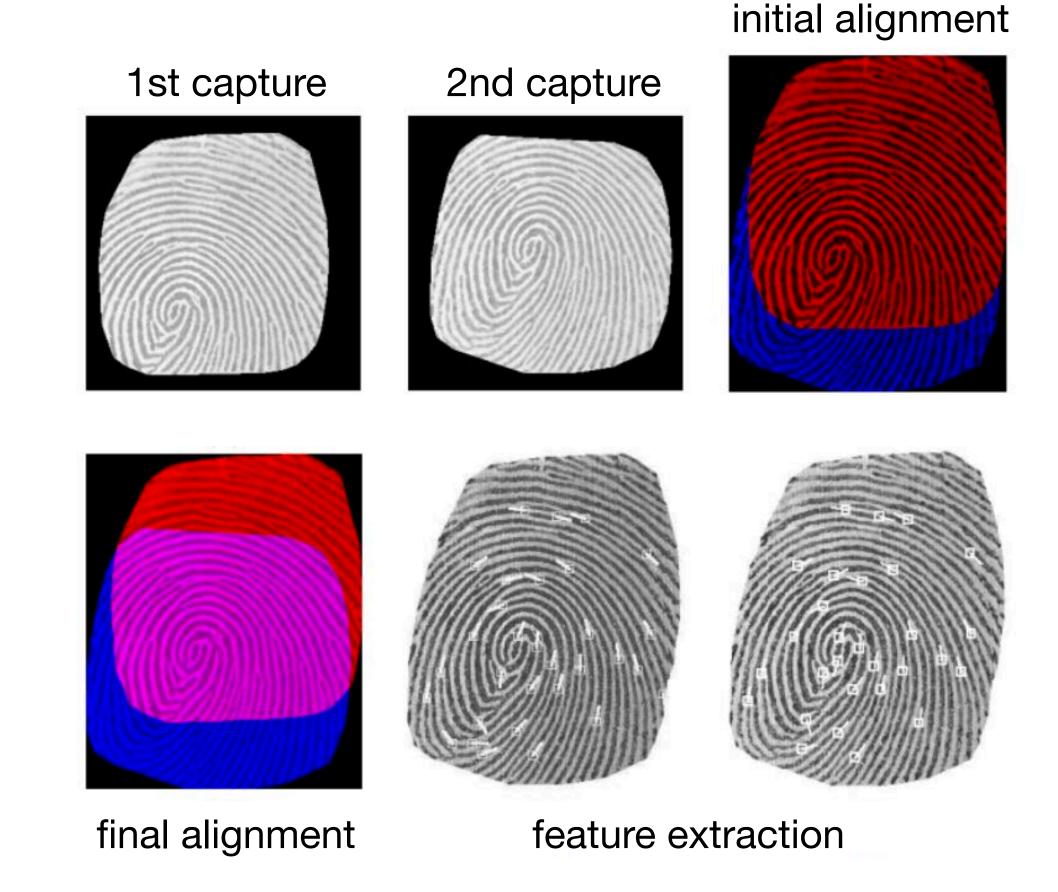
Data Fusion Levels

Sensor Level Fusion

Multiple sources of raw data
are consolidated before
feature extraction.

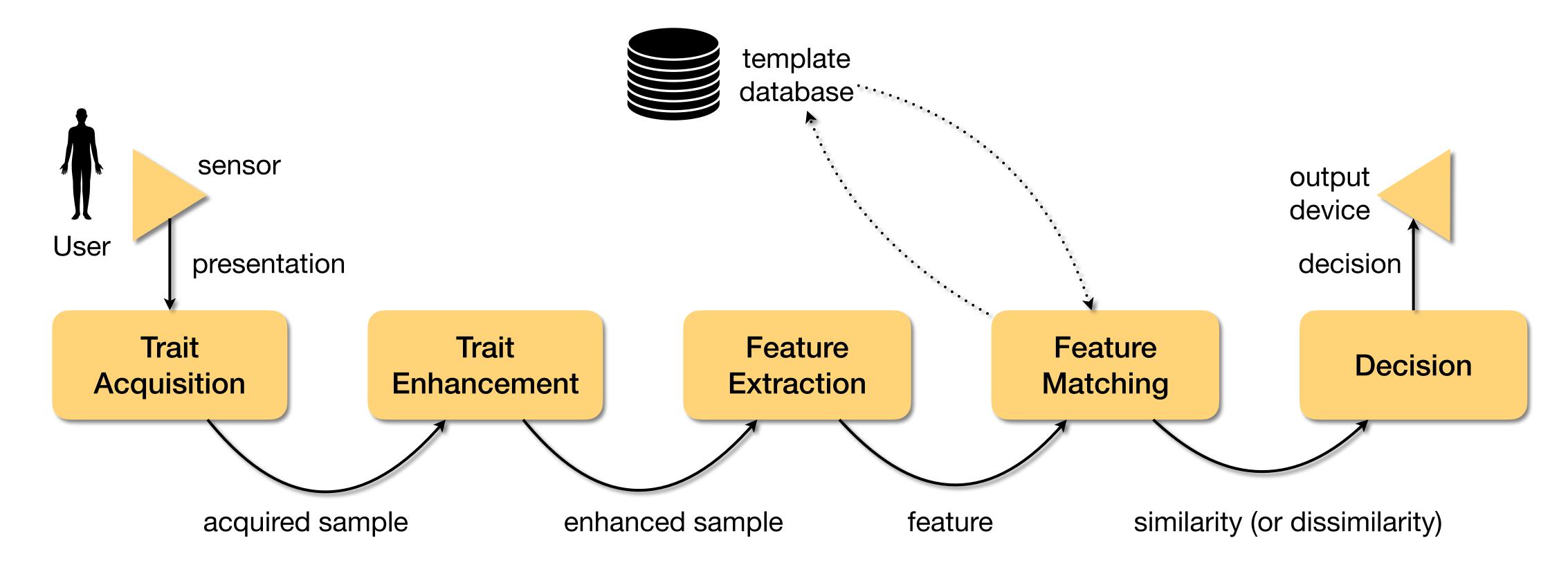
Example

Different captures of the same fingerprint are combined to generate sample larger than sensor capacity.

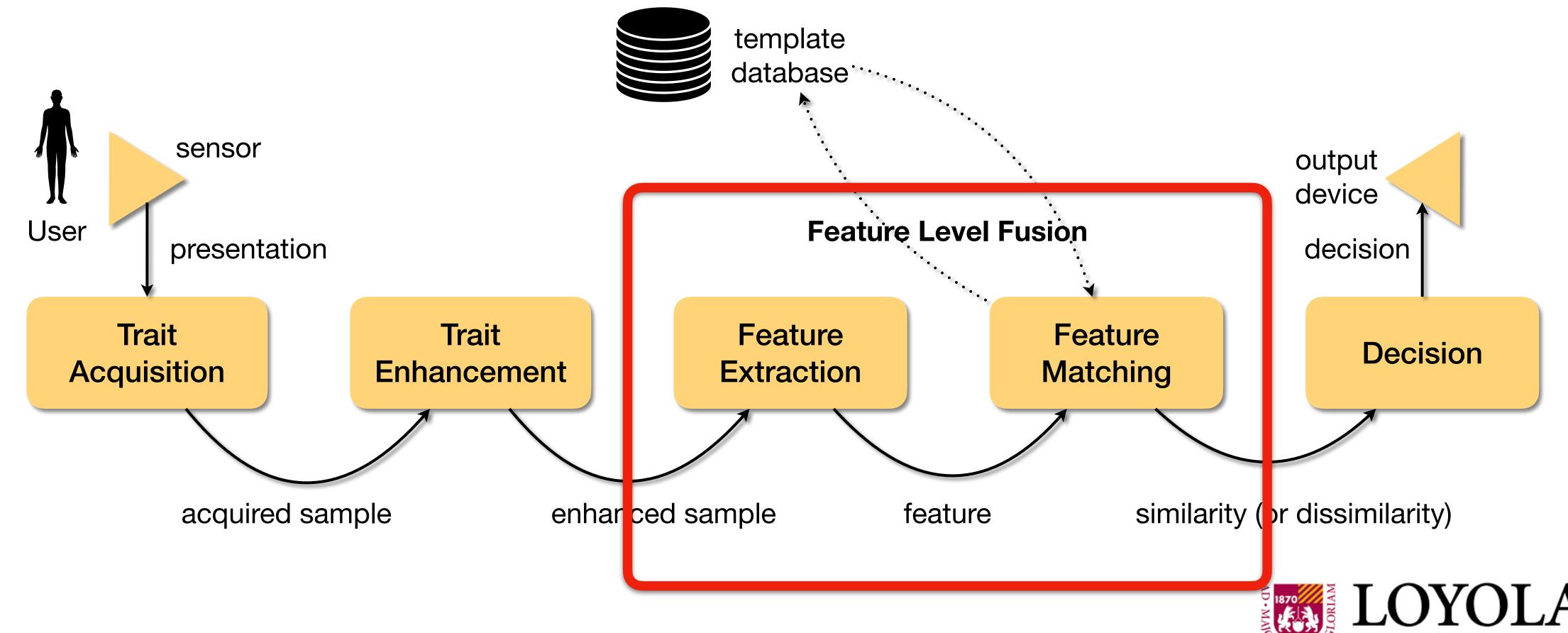


Jain and Ross
Fingerprint Mosaicking
ICASSP 2002

Data Fusion Levels



Data Fusion Levels



Data Fusion Levels

Feature Level Fusion
Multiple feature vectors
from the same individual
are combined into a
single feature vector,
prior to matching.

Feature set 2 Feature set 1 Template update

Updated feature set

Example Strategies

Linear combination, concatenation, etc.

averaging scheme

Ross, Nandakumar, and Jain

Handbook of Multibiometrics

Springer Books, 2006

Data Fusion Levels

Feature Level Fusion

Challenges

Multi-sensor Systems Different-nature feature vectors.

Multi-algorithm Systems Different-nature feature vectors.

Multi-sample Systems Same-nature feature vectors.

Multi-instance Systems Same-nature feature vectors.

Multi-modal Systems Different-nature feature vectors.

Data Fusion Levels

Feature Level Fusion

Challenges

Multi-sensor Systems Different-nature feature vectors.

Multi-algorithm Systems Different-nature feature vectors.

Multi-sample Systems Same-nature feature vectors.

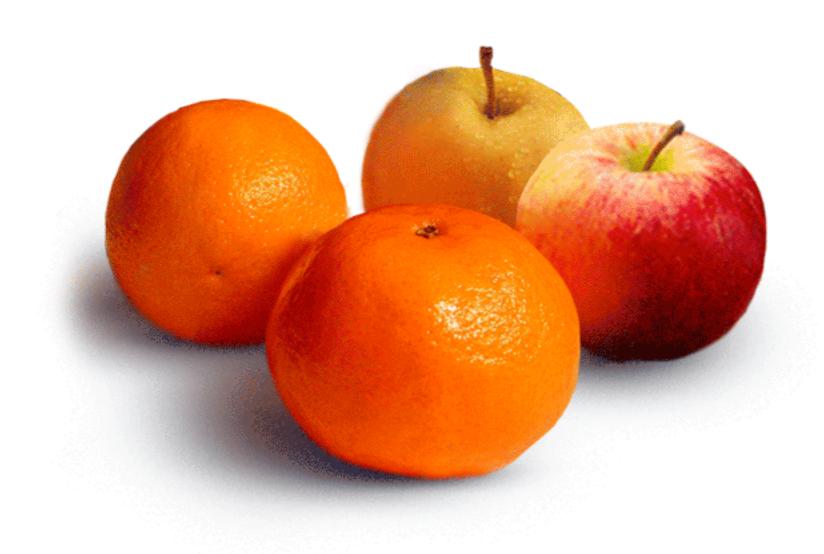
Multi-instance Systems Same-nature feature vectors.

Multi-modal Systems Different-nature feature vectors.

Data Fusion Levels

Feature Level Fusion Challenges

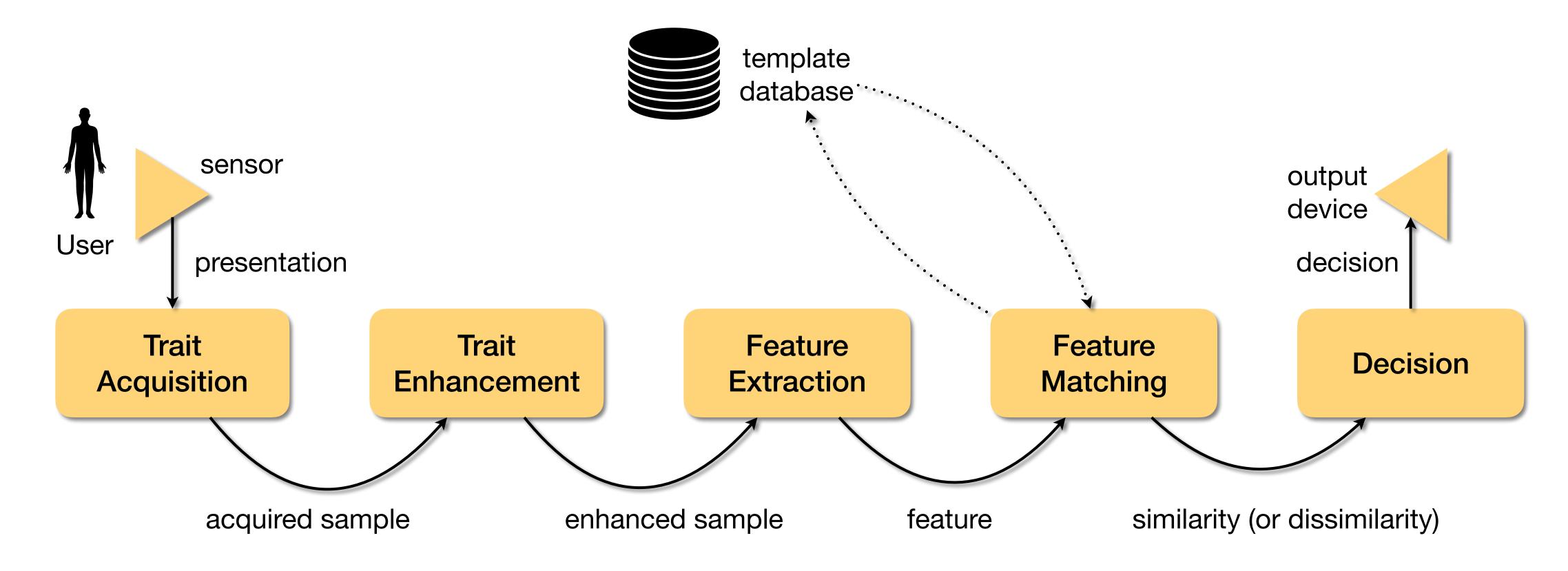
How to combine features of different nature? (e.g., different domains, different scales, different ranges of values, etc.).



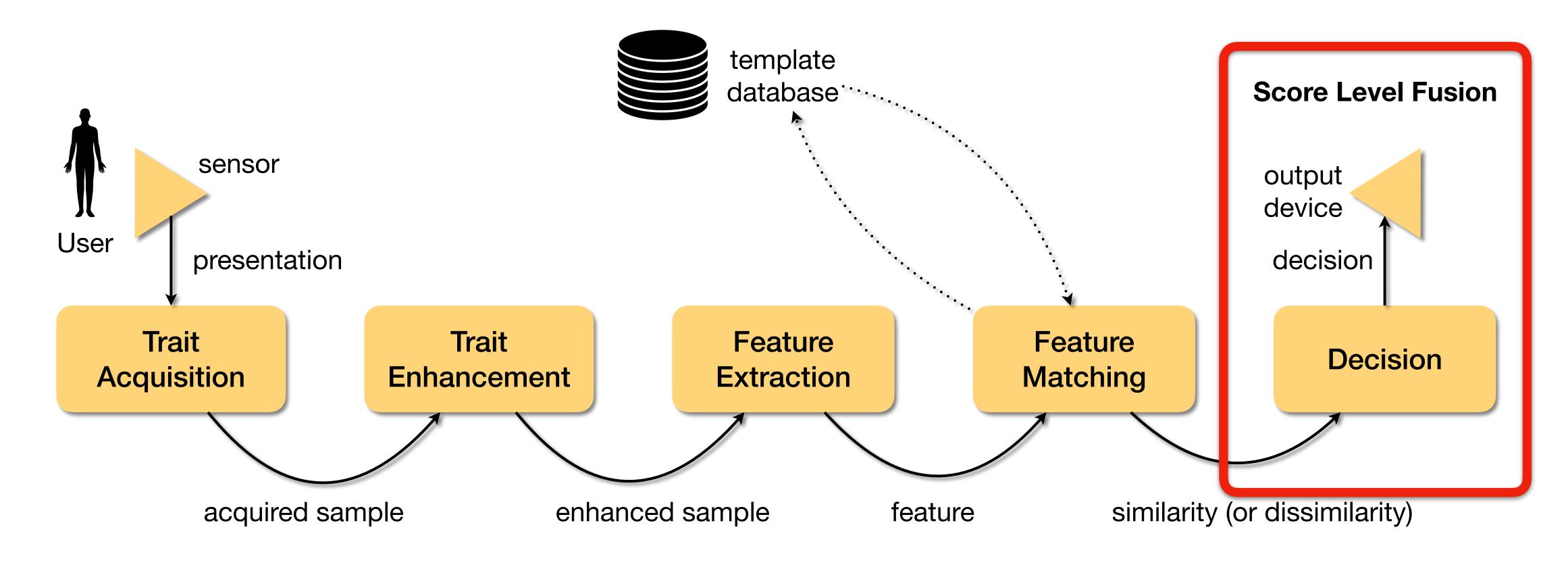
Typical solutions: **concatenation, normalization**.

Caution: too-large vectors will suffer from the **curse of dimensionality**.

Data Fusion Levels



Data Fusion Levels



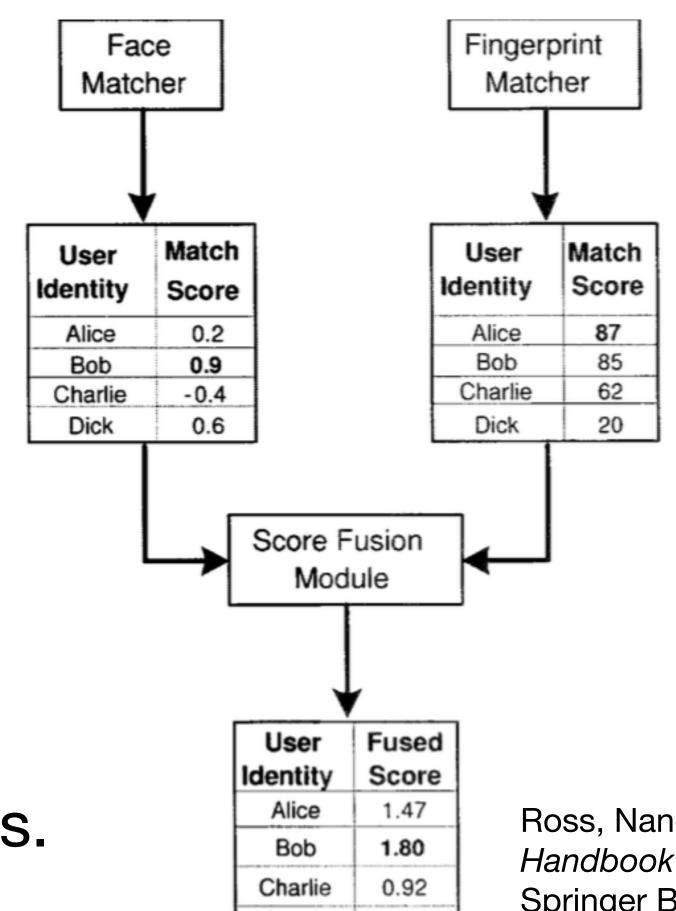
Data Fusion Levels

Score Level Fusion

Scores (similarities or dissimilarities) from different matching algorithms are consolidated before final decision.

Strategies

Discriminative versus generative approaches.

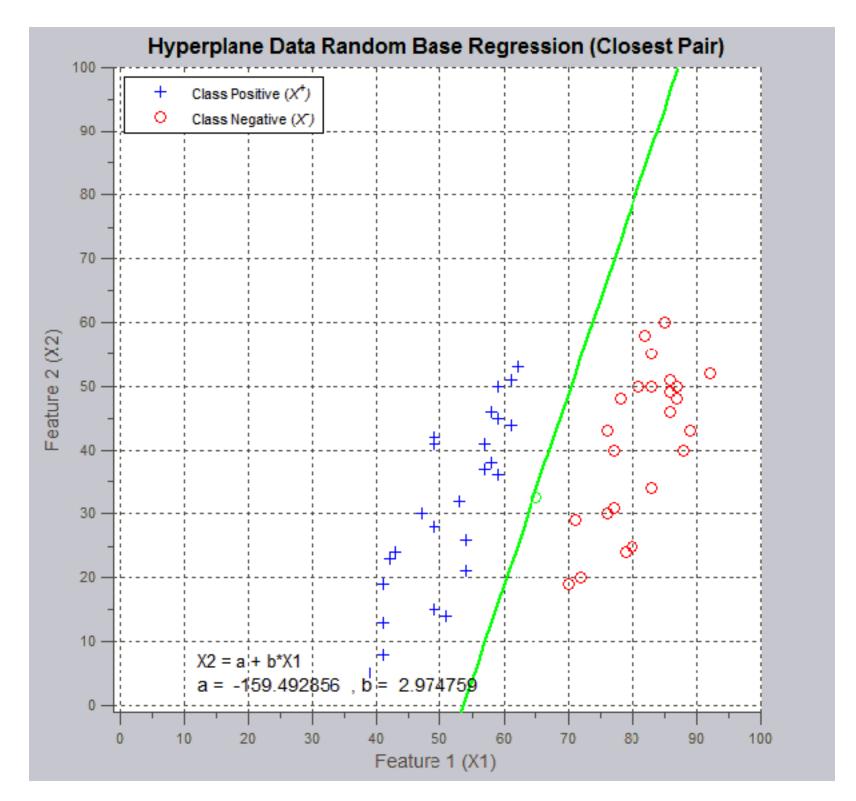


Ross, Nandakumar, and Jain Handbook of Multibiometrics Springer Books, 2006

Data Fusion Levels

Score Level Fusion
Discriminative Approaches

Thresholds, separation hyperplanes, decision trees, etc. are used to decide the Biometric system outcome (impostor versus genuine).



Example: Support Vector Machine (SVM)

Data Fusion Levels

Score Level Fusion
Discriminative Approaches

Examples: AND and OR rules.

Dr. Walter Scheirer

Data Fusion Levels

Score Level Fusion
Discriminative Approaches

Examples: Majority Voting.

Face

"Gudrun"

Fingerprint

"Ursula"

Iris

"Ursula"

Decision

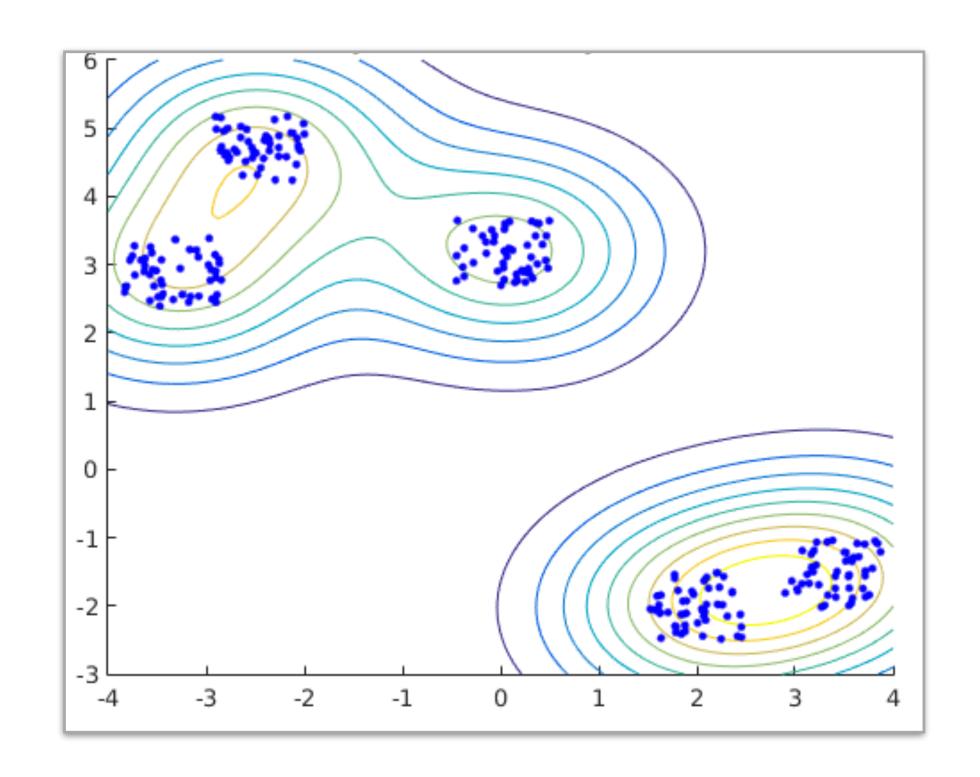
votes = 2 Ursula

Dr. Walter Scheirer

Data Fusion Levels

Score Level Fusion
Generative Approaches

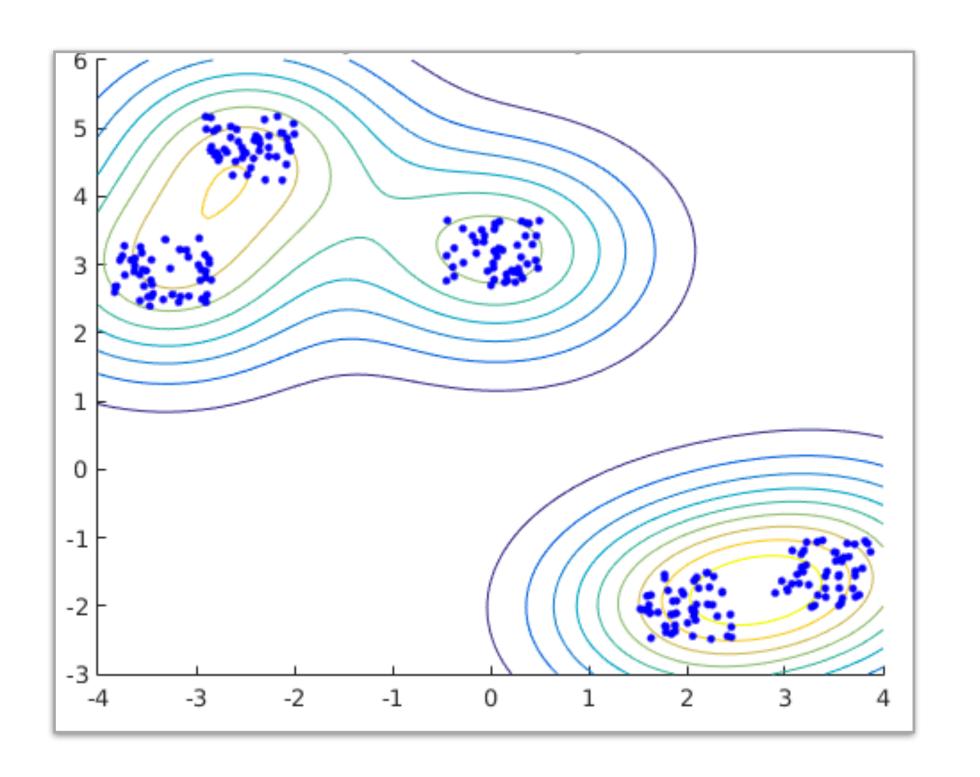
Data distribution models of the joint probability of observations and scores are computed in *training* time and further used in *operation* time to return the probability of a presentation be either impostor or genuine.



Data Fusion Levels

Score Level Fusion
Generative Approaches

Examples: Naïve Bayes, Gaussian Mixture Models (GMM), Extreme-Value Theory, etc.

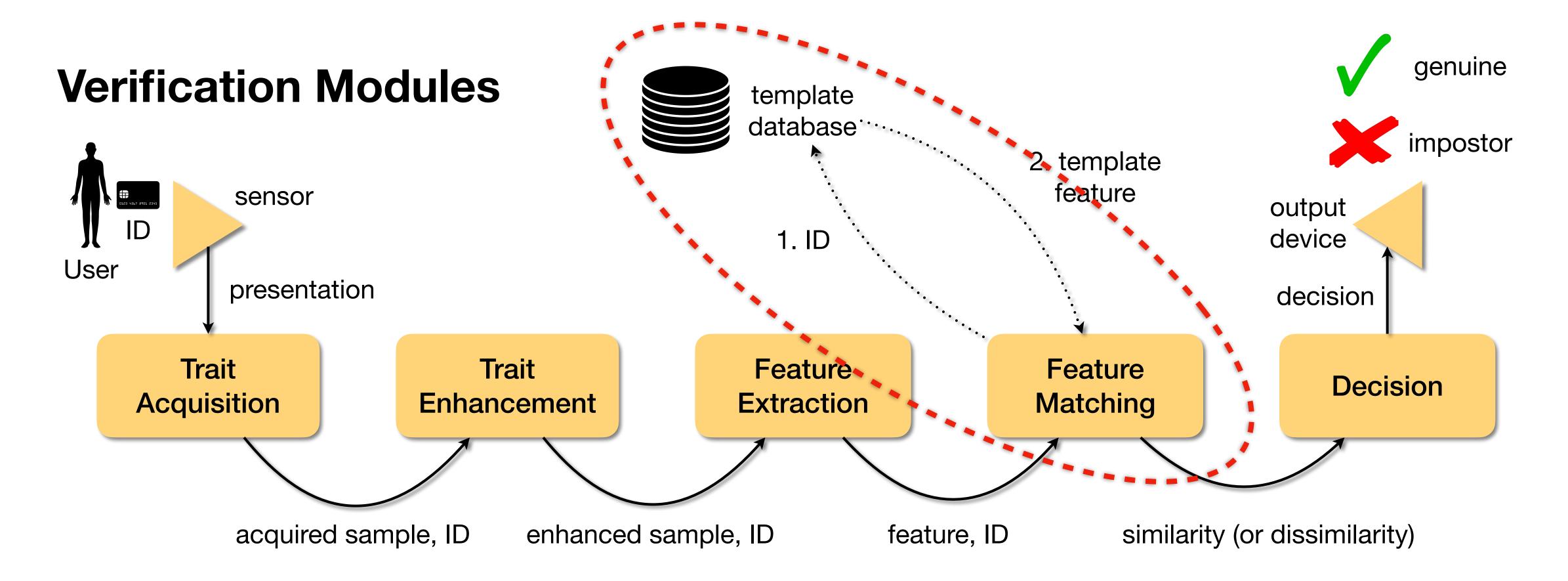


Data Fusion Levels

Score Level Fusion
Pros

Regardless of being either discriminative or generative, it can be used with commercial off-the-shelf matchers that do not expose their feature vectors but return confidence scores.

What's Next?



What's Next?

Feature Indexing

Fill out your
Today-I-missed Statement
Please visit sakai.luc.edu/x/BCJs8K.

