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Today we will...

Get to know
Iris description and matching.
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Today’s Attendance

Please fill out the form

forms.gle/UY 3Pxjt8JG99wotUA
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Feature Extraction

Typical Description Framework

normalized iris

signal processing / image filters — Let’s see 3 methods!
1 ﬂlJFL
binary iris code ]JL
s
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Feature Extraction

Zero-Crossing Approach (1/3)
Proposed by W. W. Boles.

115
Iris Image Is treated as a 1D signal 10
(iris signature). s
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Feature Extraction

Zero-Crossing Approach (1/3)
Proposed by W. W. Boles.

Dr. Adam Czajka

Iris Image Is treated as a 1D signal 1o
(iris signature). 105 |

pixel value
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Zero-Crossing Approach (1/3)
Proposed by W. W. Boles.

Iris Image Is treated as a 1D signal

(iris sighature). )
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Feature Extraction

Dr. Adam Czajka
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Zero-Crossing Approach (1/3)

Feature Extraction

1. Iris signature is filtered by Laplacians of Gaussians (LoG)

(second derivative of Gaussian).

pixel value
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Feature Extraction

Zero-Crossing Approach (1/3)

1. Iris signature is filtered by Laplacians of Gaussians (LoG)
(second derivative of Gaussian).

1D Convolution /\ [\
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Zero-Crossing Approach (1/3)

Feature Extraction

2. Zero-crossings lead to bits up; everything else is zero.

 LoG 1
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Feature Extraction

Zero-Crossing Approach (1/3)

A A5 o

LoG 1 LoG 2
1011100111000101 0101000110010101 concatenation
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Feature Extraction

2D-Gabor Filtering Approach (2/3)
Proposed by John Daugman.

De facto iris description solution. s bl e soves il s pnrolaces (50
More complete and robust than
Zero-crossing.

Source pixel
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2D Gabor filters are convolved
with the normalized iris image. mooss

New pixel value (destination pixgl)
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

Proposed by John Daug man. Gabor wavelets are a good
model of neural receptive

fields found in the visual
Empirical selection of a proper Gabor wavelet cortex.

(adequate to encode iris texture).

Filter 1 Filter 2
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X e . - from 200 Billion Iris Pair
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== W\ IEEE Proceedings, 2006
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

Filter 1

Jain, Ross, and Nadakumar
Introduction to Biometrics
Springer Books, 2011

Filter 2

> wavelet real component wavelet imaginary component
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Feature Extraction

2D-Gabor Filtering Approach (2/3)
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Number of cells: 8 x 128 = 1024
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Feature Extraction

2D-Gabor Filtering Approach (2/3)




Feature Extraction

2D-Gabor Filtering Approach (2/3)
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Number of cells: 8 x 128 = 1024 x 2 = 2048
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

Take one cell...
positive value: bit 1 /
negative value: bit O I ‘l ‘ ’ 1) \ .
j Number of cells: 8 x 128 = 1024 x 2 = 2048
2048 bits
855 UNIVERSITY CHICAGO
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Feature Extraction

2D-Gabor Filtering Approach (2/3)

2048 bits
IrisCode
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Feature Extraction

BSIF Approach (3/3) annala and Rah

BSIF: Binarized Statistical Image Features
ICPR 2012

Binarized Statistical Image Features (BSIF)
General-purpose local image descriptors
designed for texture encoding.

Examples of textures that
one might one to describe.
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BSIF Approach (3/3)

Binarized Statistical Image Features (BSIF)
Subspaces of representative image patches
(further used as filters) are learned from a

set of example patches through

Independent Component Analysis (ICA).

ICA: N filters of size | x | are estimated from
examples by maximizing their mutual
statistical independence.
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Feature Extraction

Kannala and Rahtu
BSIF: Binarized Statistical Image Features
ICPR 2012

A% 2
N |

Eight filters of size 9x9 pixels
that better represent patches
of size 9x9. Computed with
ICA.
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BSIF Approach (3/3)

Binarized Statistical Image Features (BSIF)
Images are convolved with each BSIF filter
leading to various projections in the target

subspace.

BSIF code: a threshold is used to make

the image projections binary; anything above
zero is ONE, everything else is ZERO.
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Feature Extraction

Kannala and Rahtu
BSIF: Binarized Statistical Image Features

ICPR 2012
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BSIF Approach (3/3)
In the case of Irises...

Solution's performance
IS on par with the
Gabor-based one.

Normalized iris image

_

Binarized filtering results

Feature Extraction

Czajka et al.

Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition

WACV 2019
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Feature Extraction

BSIF Approach (3/3)
In the case of Irises...
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Iris Recognition
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Feature Matching

How to Compare Binary Codes?

Use Hamming distance.

ns1T 1011101011000 10 1

ns2 0011 001001011100
XOR

Distance=sum(1 0 O 0O 1 00010011001 )=6
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Feature Matching

How to Compare Binary Codes?

Problems (1/2)
How to consider iris masks?

Iris 1 Iris 2
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Feature Matching

How to Compare Binary Codes?

[;: cells f iris 1
Problems (1/2) 12 GETS oM S
H ¢ der ir S ? I,: cells from iris 2
ow to consider iIris masks? | M, cells from mask 1
Solution: Normalized Hamming Distance M,: cells from mask 2

bitwise_sum(l; XOR I, AND M, AND M,)
bitwise_sum(M, AND M,)

dist =

Only cells considered by both masks are used.

> =,

~ <

o) S
% _
L v

v~ UNIVERSITY CHICAGO

31




Feature Matching

How to Compare Binary Codes?

Problems (2/2)
How to deal with iris rotations?
They happen when heads are tilted...
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Feature Matching

How to match with iris rotations?
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Feature Matching

How to match with iris rotations?
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Feature Matching

How to match with iris rotations?




Feature Matching

How to match with iris rotations?




Feature Matching

How to match with iris rotations?

misalignment
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Feature Matching

How to match with iris rotations?

|IIII

misalignment
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Feature Matching

How to Compare Binary Codes?

Problems (2/2)
How to deal with iris rotations??
Solution: provide different shifts for one of the iris codes.
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How to Compare Binary Codes?

Problems (2/2)

How to deal with iris rotations?
Solution: provide different shifts
for one of the Iris codes.
Compute various normalized

Hamming distances (one for each shift).

Take the smallest distance as the score.

Feature Matching
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Iris Recognition
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Iris Recognition
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feature

Use distance
threshold.
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Domain-Specific BSIF Codes

Original BSIF: What is the gain of learning
Natural images to learn filters. from irises?
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Domain-Specific BSIF Codes

Manual Annotation Eye-Tracker Data

How to Select
Iris Patches?

% LOYOLA

% ~“ UNIVERSITY CHICAGO

45




Annotation Tool

Avalilable at
https://github.com/
danielmoreira/iris-examination

Paper.js
Web-browser drawing library.

Your decision (change),

SAME PERSON (CERTAIN)
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nnotate 2-5 matching or non-matching regions
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Domain-Specific BSIF Codes

Eye Tracker
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Application

Domain-Specific BSIF Codes

Either original or
domain specific.

Normalized iris image Filters

N L
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Binarized filtering results

Czajka et al

Ny s~ — :
T\h‘m\ﬂ? - Domain-Specific Human-Inspired
- PP “’E_-'_ Binarized Statistical Image Features
for Iris Recognition
ﬂp Wfpﬁ 3 WACV 2019
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Domain-Specific BSIF Codes

Results
Random Natural
Patches
‘N
=i'N T
Original BSIF Filters
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IrIS' based BSI F Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition
WACV 2019
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Domain-Specific BSIF Codes

Results |
Random Natural Random lIris
Patches Patches
1'NT T
ER . 1
Original BSIF Filters
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IrIS' based BSI F Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition
WACV 2019
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Domain-Specific BSIF Codes

Results | |
Random Natural Random lIris Manual Iris
Patches Patches Patches
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IrIS' based BSI F Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition
WACV 2019
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Domain-Specific BSIF Codes

Results | | |
Random Natural Random Iris Manual Iris  Eye-tracked Iris
Patches Patches Patches Patches
+
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=ac T | 3
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IrIS' based BSI F Domain-Specific Human-Inspired
Binarized Statistical Image Features
for Iris Recognition
WACV 2019
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What’s Next?

Fingerprint Recognition
Coding Class

Fill out your

Today-I-missed Statement
Please visit sakai.luc.edu/x/BCJs8K.
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