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Feature Indexing



Today we will…
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Get to know 
Methods of feature indexing for 
biometric identification.



Today’s Attendance
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Please fill out the form 
 
https://forms.gle/2rCmm8YaXogiEn18A




What is Biometrics?
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7 billion people 
Who is this person? (Identification) 
Is this person Jane Doe? (Verification) 
 
Biometrics aims at identifying or 
verifying the claimed or denied identity 
of an individual based on their physical, 
chemical or behavioral traits. 



Verification Modules

Biometric Systems
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Biometric Verification
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No need for complex 
feature indexing.

Feature 
Matching

template 
database

1. ID

2. template 
feature



Biometric Verification
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No need for complex 
feature indexing.

Use unique person’s ID as 
index (or hash function input).

Retrieval of features in 
constant time.

0001

0002

0003

0004 
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Biometric Identification
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How to retrieve k-nearest 
features to compose gallery?

Need for more complex indexing.

Retrieval of features 
as quick as possible.

Feature 
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Biometric Identification

12

How to retrieve k-nearest 
features to compose gallery?

Need for more complex indexing.

Retrieval of features 
as quick as possible.



Level-1 Features 

loop delta

Usage of Singular Points and Core 

Fingerprint Indexing
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Level-1 Features 

Usage of Singular Points and Core 

Fingerprint Indexing
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plain arch tented arch  whorl twin loopleft loop right loop

Jain, Ross, and Nadakumar 
Introduction to Biometrics 
Springer Books, 2011



Fingerprint Indexing
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Level-1 Features 
 
FBI Automated Fingerprint 
Identification system (AFIS) 
More than 200 million dactyloscopy cards. 
Varied quality of samples. 
 
Thanks to fingerprint classification 
through level-1 features, this time 
is reduced to 20 min.

Henry’s features, an alternative 
classification of level-1 features 
with 8 classes.



Fingerprint Indexing
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Level-1 Features 
 
FBI Automated Fingerprint 
Identification system (AFIS) 
More than 200 million dactyloscopy cards. 
Varied quality of samples. 
 
And a  computer-based solution 
can do it in seconds, benefitting from 
the same features.

Henry’s features, an alternative 
classification of level-1 features 
with 8 classes.



Feature Indexing
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2048 bits IrisCode

Iris Identification



Feature Indexing
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2048 bits IrisCode 512D ArcFace embedding

Iris Identification Face Identification



Feature Indexing

19

2048 bits IrisCode 512D ArcFace embedding

0001

0002

0003

0004 

0003

0001

Feature space

Iris Identification Face Identification Inverted Index

Person’s IDs



Feature Indexing
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How to retrieve k-nearest 
features to compose gallery?

Need for more complex indexing.

Retrieval of features 
as quick as possible.

Feature 
Matching

template 
database

1. feature 
query

2. feature 
gallery 

(with IDs)



Brute Force Search
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Brute Force Search
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0001

0002

0003

0004 

0003

0001

Inverted Index

query
d1

query
d2

query
d3

query
d4

query
d5

query
d6

What is the 
computational 
complexity?
Linear: O(n), where 
n is the number of 
features.

How to reduce it?



Early Stop Search
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0001

0002

0003

0004 

0003

0001

Inverted Index

query
d1

query
d2

query
d3

query
d4

How to reduce 
complexity?

Stop when you find 
a feature that is 
close enough.

d4 < threshold



Space Filling Curves
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Curves determined by index 
mapping functions that pass 
once through every point of 
an N-dimensional space.

2D space examples   

How to reduce 
complexity?



Space Filling Curves
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2D space examples   

Hilbert curves

Curves determined by index 
mapping functions that pass 
once through every point of 
an N-dimensional space.

How to reduce 
complexity?



Space Filling Curves
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3D space examples   

Hilbert curves

Curves determined by index 
mapping functions that pass 
once through every point of 
an N-dimensional space.

How to reduce 
complexity?

The mapping functions are 
executed in constant time, 
w.r.t. the number of features.



Space Filling Curves
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The curves are 1D and the elements 
indexed by them are “sorted” in an 
approximation of their distances in 
the original space.

If the curve is used as a binary tree, 
an approximation of the k-nearest 
elements can be obtained in O(log(n)), 
where n is the number of features.

Example: 
2-nearest 
elements

How to reduce 
complexity?



Clustering
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Cluster the features and limit 
the k-nearest search to one or 
a couple of clusters.

How to reduce 
complexity?

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

There will be less elements to 
consider



Clustering
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Cluster the features and limit 
the k-nearest search to one or 
a couple of clusters.

How to reduce 
complexity?

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

There will be less elements to 
consider

K-Means



Clustering
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K-Means

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Select K random features as 
cluster centers.



Clustering
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K-Means

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Assign features to closes cluster 
centers.



Clustering
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K-Means

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Update the cluster centers by 
taking the means of each cluster.



Clustering
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K-Means

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf

Repeat until convergence.



Clustering
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K-Means

What are the limitations of this 
approach?

What is the ideal number of clusters?

Clustering is offline: i.e., it does not 
happen at feature querying time.

Complexity of building clusters: 
O(Kn) in each step until convergence. K: #clusters 

n: #features



Clustering
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Variation: K-medoids

Instead of using means as the cluster 
centers, use medians, which are 
actual existing features.



KD Trees
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How to reduce 
complexity?

K-dimensional trees: 
For K times 
   Split one feature dimension into 
   two halves.

2D-features toy case

x

y



KD Trees
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How to reduce 
complexity?

K-dimensional trees: 
For K times 
   Split one feature dimension into 
   two partitions using medians.

2D-features toy case

x

y

K = 1

indices



KD Trees
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How to reduce 
complexity?

K-dimensional trees: 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KD Trees
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How to reduce 
complexity?

K-dimensional trees: 
For K times 
   Split one feature dimension into 
   two partitions using medians.

2D-features toy case

x

y

K = 3

indices



KD Trees
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How to reduce 
complexity?

K-dimensional trees: 
For K times 
   Split one feature dimension into 
   two partitions using medians.

2D-features toy case

x

y

K = 3

Complexity to build: O(n log(n))

Building is offline: i.e., it does not 
happen at feature querying time.



KD Trees
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How to reduce 
complexity?

How to obtain 3-nearest neighbors?

2D-features toy case

x

yquery



KD Trees

43

How to reduce 
complexity?

2D-features toy case

x

y

K = 3

query

How to obtain 3-nearest neighbors?
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How to reduce 
complexity?

2D-features toy case

x

y

K = 3

query

How to obtain 3-nearest neighbors?



KD Trees
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How to reduce 
complexity?

2D-features toy case

x

y

K = 3

query

How to obtain 3-nearest neighbors?

No changes in 3-nearest, so stop.



Product Quantization
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How to reduce 
size?

…

ID 1
ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

M  features
P people

Toy Case (6D features, reality: 512D for faces)



Product Quantization
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1. Start with a 
coarse quantizer.

How to reduce 
size?

State-of-the-art feature 
indexing.

…

ID 1
ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

M  features
P people

Toy Case (6D features, reality: 512D for faces)

coarse quantizer
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Product Quantization
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1. Start with a 
coarse quantizer.

How to reduce 
size?

State-of-the-art feature 
indexing.
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Product Quantization
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1. Start with a 
coarse quantizer.

How to reduce 
size?

State-of-the-art feature 
indexing.

…

ID 1
ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

M  features
P people

N coarse centroidsM >> N

X

Toy Case (6D features, reality: 512D for faces)

coarse quantizer



Product Quantization
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2. Compute residuals 
(differences) between 
features and their 
respective coarse 
centroids.

How to reduce 
size?

State-of-the-art feature 
indexing.

…

M  features N coarse centroidsM >> N

A
BID 1

ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

Toy Case



Product Quantization
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2. Compute residuals 
(differences) between 
features and their 
respective coarse 
centroids.

How to reduce 
size?

State-of-the-art feature 
indexing.

…

M  features N coarse centroidsM >> N

Residual

M residuals

A
B A- BID 1

ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

Toy Case



Product Quantization
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3. Reduce the 
dimensionality of 
residuals with 
Product Quantization.

How to reduce 
size?

State-of-the-art feature 
indexing.

…

M  residuals

A - B
ID 1
ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

Toy Case
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3. Reduce the 
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residuals with 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Product Quantization
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3. Reduce the 
dimensionality of 
residuals with 
Product Quantization.

How to reduce 
size?

State-of-the-art feature 
indexing.

…

M  residuals

A - B
ID 1
ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P

Toy Case

M  residuals 
D dimensions

subspaces

subspace 
clustering

Product Quantization

quantization

M features 
F dimensions 
 
D >> F



Product Quantization

4. Append the product 
quantized residuals to 
an inverted file index.

How to reduce 
size?

State-of-the-art feature 
indexing.
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Product Quantization
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indexing.
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Product Quantization

4. Append the product 
quantized residuals to 
an inverted file index.

How to reduce 
size?

State-of-the-art feature 
indexing.
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Product Quantization

4. Append the product 
quantized residuals to 
an inverted file index.
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indexing.

65

…

ID 1
ID 1
ID 2
ID 2
ID 2
ID 3
ID 3
ID 4

ID P N coarse centroids

Toy Case (6D features, reality: 512D for faces)

M  features 
D dimensions

ID 1 ID 1 ID 2



Product Quantization

4. Append the product 
quantized residuals to 
an inverted file index.
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indexing.
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Product Quantization

4. Append the product 
quantized residuals to 
an inverted file index.

How to reduce 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State-of-the-art feature 
indexing.
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…

ID 1
ID 1
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M features 
F dimensions

M  features 
D dimensions

X

ID 1 ID 1 ID 2

ID 2 ID 2

ID 3 ID 3 ID 4

ID P



Product Quantization

Usage example: 
Indexing.

How to reduce 
size?

State-of-the-art feature 
indexing.

Source: Jegou et al. 
Product quantization for nearest neighbor search 
IEEE T-PAMI 2010



Product Quantization

Usage example: 
Retrieving k-nearest.

How to reduce 
size?

State-of-the-art feature 
indexing.

Source: Jegou et al. 
Product quantization for nearest neighbor search 
IEEE T-PAMI 2010



Product Quantization

Available 
implementation.

How to reduce 
size?

State-of-the-art feature 
indexing.

https://github.com/facebookresearch/faiss
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Content 

Core Traits (3) 
Concepts 
Baseline implementation 
Data collection 
Evaluation 
Attacks 
Assignments

Basics 
Concepts 
Metrics 
Metric 
implementation

+
Alternative Traits and 
Fusion 
Concepts

Invited Talks (2) 
State of the art 
Future work
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