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Today we will...

Get to know
Methods of feature indexing for
biometric identification.
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What is Biometrics?
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7 billion people
Who is this person? (Identification)
Is this person Jane Doe? (Verification)

Biometrics aims at identifying or
verifying the claimed or denied identity
of an individual based on their physical,
chemical or behavioral tralts.
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Biometric Systems
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Biometric Systems
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Biometric Verification
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Biometric Verification

No need for complex

feature indexing. M—>  —

0002 |
Use unique person’s ID as e
iIndex (or hash function input).

( P —

Retrieval of features In
constant time.
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Biometric Systems

g . ID: John D
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User -~

Ildentification Modules

A4

Trait
Acquisition

SENsor
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Trait
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enhanced sample
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Biometric Identification
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Biometric Identification

How to retrieve k-nearest
features to compose gallery?

Need for more complex indexing.

Retrieval of features \

as quick as possible. SO WHAT WOULD YOU DO?
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Fingerprint Indexing
Level-1 Features

Usage of Singular Points and Core

nd Nadakumar

Introduction to Biometrics
Springer Books, 2011

Ross, a

Jain,
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Fingerprint Indexing
Level-1 Features

Usage of Singular Points and Core

plain arch tented arch
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Jain, Ross, and Nadakumar
Introduction to Biometrics
Springer Books, 2011
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Fingerprint Indexing
Level-1 Features

FBlI Automated Fingerprint

Identification system (AFIS)
More than 200 million dactyloscopy cards.
Varied quality of samples.

(2.9%)

double loop accidental

Thanks to fingerprint classification Henry’s features, an alternative
through level-1 features, this time classification of level-1 features

IS reduced to 20 min. with 8 classes.
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Level-1 Features

FBlI Automated Fingerprint
Identification system (AFIS)

More than 200 million dactyloscopy cards.

Varied quality of samples.

And a computer-based solution

can do it in seconds, benefitting from

the same features.

10

Fingerprint Indexing

(2.9%)

double loop accidental

Henry’s features, an alternative
classification of level-1 features

with 8 classes.
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Iris ldentification

R

Feature Indexing

2048 bits lrisCode
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Iris ldentification

Feature Indexing

Face ldentification

i |

2048 bits lrisCode

512D ArcFace embedding
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Feature Indexing

Iris ldentification

2048 bits lrisCode

Face ldentification

512D ArcFace embedding
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Inverted Index
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Feature Indexing
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Brute Force Search

Inverted Index

d1i
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What is the
computational
complexity?

Linear: O(n), where
n i1s the number of
features.

How to reduce it?
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22

Brute Force Search

Inverted Index
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Early Stop Search

Inverted Index

d1

How to reduce —
ity?

complexity* d2

Stop when you find el

a feature that is
close enough.

query [N —

d4 < threshold
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How to reduce
complexity?

Curves determined by index
mapping functions that pass
once through every point of

an N-dimensional space.
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Space Filling Curves

2D space examples
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Space Filling Curves

How to reduce 2D space examples
complexity?  HHHH R S

6 7 10 1 1 22 23 26 27|38 39 42 43
Curves determined by index : ’ ol B o L ER R O IR o ottt o

mapping functions that pass | | 5 ha S T I o

Once thrOugh every point Of 1 . 15 14| 9| |10/55] |56 |51 50
. . 1 2 15 16 2 ST B 758 [57] [62 63
an N-dimensional space. IRpOEORD S

Hilbert curves
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How to reduce
complexity?

Curves determined by index
mapping functions that pass
once through every point of

an N-dimensional space.

The mapping functions are
executed In constant time,
w.r.t. the number of features.

Space Filling Curves

20

Hilbert curves
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How to reduce
complexity?

The curves are 1D and the elements
iIndexed by them are “sorted” in an
approximation of their distances in
the original space.

If the curve is used as a binary tree,
an approximation of the k-nearest
elements can be obtained in O(log(n)),
where n is the number of features.
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Clustering

How to reduce
complexity?

Cluster the features and limit
the k-nearest search to one or
a couple of clusters.

SR SR
L, N
. CTSLEE A AU
\‘“ . " {‘.. L) .-
-t ..3:.1\: ;.‘;).
‘e, 3 a® .
o VY . 2 P
er w T Dy
ST
e P S TR
__.'.)\._. . )_‘_’,,'<
o susle RN
< i ,.I ';; ‘J" \*..3
““ Ny
AT Ny

There will be less elements to & B
consider R

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf
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Clustering

How to reduce
complexity?

Cluster the features and limit
the k-nearest search to one or
a couple of clusters.
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Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf
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Clustering

K-Means

Select K random features as
cluster centers.

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf
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Clustering

K-Means

Assign features to closes cluster
centers.

-2 0 2

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf
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Clustering

K-Means

Update the cluster centers by
taking the means of each cluster.

-2 0O 2
Source: https://people.csail.mit.edu/
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K-Means

Repeat until convergence.

Clustering

Source: https://people.csail.mit.edu/
dsontag/courses/ml12/slides/lecture14.pdf
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Clustering

K-Means -

What are the limitations of this
approach?

What is the ideal number of clusters?

Complexity of building clusters:

_ : K: #clusters
O(Kn) in each step until convergence. < =i 0 = 5

Clustering is offline: i.e., it does not
happen at feature querying time.
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Variation: K-medoids

Instead of using means as the cluster
centers, use medians, which are
actual existing features.

Clustering
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How to reduce

O
complexity? ® O
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K-dimensional trees: .
For K times o
Split one feature dimension into 4 .
two halves. a a
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KD Trees

2D-features toy case
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KD Trees

2D-features toy case

How to reduce ; : K —
ity? O A -
complexity”: . i .
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K-dimensional trees: ’
For K times o 5
Split one feature dimension into 4 -
two partitions using medians. a a
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2D-features toy case

How to reduce

lexity? ° o ® =2
complexity” . i 5 .
O
o o o
K-dimensional trees: ’
For K tmes .. P ;
Split one feature dimension into 4 i -
two partitions using medians. a ,
O - o ©
L © . ©
‘ indices o °
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2D-features toy case

How to reduce

lexity? ° o ® =2
complexity” . i 5 .
O
o o o
K-dimensional trees: ’
For K tmes .. P ;
Split one feature dimension into d o -
two partitions using medians. a ,
O - o ©
. . . O
‘ indices o °
X
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2D-features toy case

How to reduce

lexity? o o o K=3
complexity” H i -
: 0.
o i o ’ o
K-dimensional trees: g ’
For K tmes .. P R ;
Split one feature dimension into d o -
two partitions using medians. , o
* e i ¢ €
- o .
‘ indices ; o . @
X
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2D-features toy case

How to reduce :
complexity? ® . . @

K-dimensional trees: :

For K tmes | ... P
Split one feature dimension into '
two partitions using medians.

Complexity to build: O(n log(n))

Building is offline: i.e., it does not
happen at feature querying time. X
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How to reduce
complexity?

How to obtain 3-nearest neighbors?

’ query

42

KD Trees

2D-features toy case
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KD Trees

2D-features toy case

How to reduce :
complexity? ® . . @

How to obtain 3-nearest neighbors?

...... T, S
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How to reduce
complexity?

How to obtain 3-nearest neighbors?

’ query

44

KD Trees

2D-features toy case
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How to reduce
complexity?

How to obtain 3-nearest neighbors?

’ query
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KD Trees

2D-features toy case
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KD Trees

2D-features toy case

How to reduce :
complexity? ® . . ®

How to obtain 3-nearest neighbors?
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KD Trees

2D-features toy case
How to reduce

lexity? o o ’ =3
complexity” o i .o
: o
o : o i y
How to obtain 3-nearest neighbors? ' ¢
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KD Trees

2D-features toy case

How to reduce :
complexity? ® . . ®

How to obtain 3-nearest neighbors?

e |

) e
Z s . o ®
No changes in 3-nearest, so stop. . o -
X
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Product Quantization

Toy Case (6D features, reality: 512D for faces)

ID 1
ID 1
ID 2
ID 2
ID 2
D 3
D 3
D 4

How to reduce
size?

ID P

M features

P people
‘ >
— % - LOYOLA
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ID 1
How to reduce
. ID 1
size?
ID 2
ID 2
State-of-the-art feature 0o
iIndexing. S 3
D 3
1. Start with a D 4
coarse quantizer.
DP
P people

M features

.
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Product Quantization

Toy Case (6D features, reality: 512D for faces)

coarse quantizer
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How to reduce
size?

State-of-the-art feature
iIndexing.

1. Start with a
coarse quantizer.

ID 1
ID 1
ID 2
ID 2
ID 2
D 3
D 3
D 4

ID P

P people

M features

.
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Product Quantization

Toy Case (6D features, reality: 512D for faces)

coarse quantizer
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How to reduce
size?

State-of-the-art feature
iIndexing.

1. Start with a
coarse quantizer.

ID 1
ID 1
ID 2
ID 2
ID 2
D 3
D 3
D 4

ID P

P people

Toy Case (6D features, reality: 512D for faces)

M features

——EEEEER
__—EEEEE

S—
"

Product Quantization

coarse quantizer

o

N coarse centroids
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How to reduce
size?

State-of-the-art feature
iIndexing.

1. Start with a
coarse quantizer.

ID 1
ID 1
ID 2
ID 2
ID 2
D 3
D 3
D 4

ID P

P people

Toy Case (6D features, reality: 512D for faces)
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Product Quantization

coarse quantizer
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M features M >>N N coarse centroids
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Product Quantization

Toy Case

A
B
How to reduce = \......

size?

State-of-the-art feature
iIndexing.

2. Compute residuals
(differences) between
features and their
respective coarse

centroids. M features M >>N N coarse centroids
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Product Quantization

Toy Case

A
B
How to reduce = \......

size?

State-of-the-art feature
iIndexing.

2. Compute residuals
(differences) between
features and their
respective coarse

centroids. M features M >>N N coarse centroids
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How to reduce b
. D 1
size?
D2
State-of-the-art feature :g 2
iIndexing. S 3
D 3
3. Reduce the D 4
dimensionality of
residuals with op
Product Quantization.

Toy Case

M residuals

506
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Product Quantization
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Product Quantization

Toy Case A-B Product Quantization
D 1
How to reduce S S B B M residuals
. D 1 I S . — D dimensions
Slze? I 1 | | |
D2
ID 2
State-of-the-art feature 0o
iIndexing. S 3
D 3
3. Reduce the D 4
dimensionality of
residuals with op
Product Quantization.
M residuals

\\ W-adv
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Product Quantization

Toy Case A-B Product Quantization

D 1

How to reduce T B . - M residuals
. D 1 [ D dimensions

size? |

D2

ID 2
State-of-the-art feature 0o / \
I I u u O subspaces
iIndexing. S 3 I Y

D 3 ‘
3. Reduce the D 4
dimensionality of
residuals with op
Product Quantization.

M residuals

\\ W-adv
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Product Quantization

Toy Case A-B Product Quantization

How to reduce D T S N S M residuals
size? D 1 1 L D dimensions

D2
State-of-the-art feature :g 2 / \
indexing. . i s i subspaces

5 3 | H U
3. Reduce the D 4 subspace
dimensionality of ustering
residuals with
Product Quantization. 0

M residuals
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Product Quantization

Toy Case A-B Product Quantization

D 1
How to reduce S S B B M residuals
Size? D 1 1 [ D dimensions

' D2

ID 2
State-of-the-art feature / \
. . ID 2 i
iIndexing. 4 u u P  subspaces

| | | | |
U | H

N 3 |
3. Reduce the D 4 subspace
dimensionality of clustering
residuals with op
Product Quantization. quantization

M residuals
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Product Quantization

Toy Case A-B Product Quantization

D 1
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How to reduce
size?
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quantized residuals to
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How to reduce
size?

State-of-the-art feature
iIndexing.

Usage example:
Indexing.

Product Quantization

Source: Jegou et al.
Product quantization for nearest neighbor search

|IEEE T-PAMI 2010
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How to reduce
size?

State-of-the-art feature
iIndexing.

Usage example:
Retrieving k-nearest.

--------------------------------------------------

. Query processing

compute r(x)
residual
Qc(X)
wxM

coarse
quantizer

Product Quantization

Source: Jegou et al.
Product quantization for nearest neighbor search
IEEE T-PAMI 2010

d(r(x),qe(r(y))

select k :
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Search result
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Product Quantization
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