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Face Recognition
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Face Recognition
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Acquisition

On-line versus Off-line

FACE-TO-FACE oy
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https://www.youtube.com/watch?v=BYN4oF_bi4c

W-daVv

[
»

WV

J Js O'
e v

% LOYOLA

UNIVERSITY CHICAGO




Controlled Acquisition
Right pose, distance and illumination.

FACE-TO-FACE oy

ORI
. ' ‘TSATESYSNEWFACIAL RECOGNITION TECHNOLOGY g y
- < LI \—/
’ 'l -~ \r a i \

https://www.youtube.com/watch?v=BYN4oF_bi4c

Acquisition

https://www.youtube.com/watch?v=-cjoJR3oWcQ
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Acquisition

Controlled Acquisition
Different light wavelengths. Jain, Ross, and Nadakumar

Introduction to Biometrics
’] -\ " p. A " = N\

Springer Books, 2011

camera.

Captures at visible and near-infrared spectra.
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Acquisition

Controlled Acquisition
3D Information

Source:
Dr. Walter Scheirer

Minolta Vivid 900/910 3DMD “Qlonerator”
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Acquisition

Unconstrained Acquisition
No illumination control.

https://www.nist.gov/system/files/documents/itl/iad/ig/05771424.pdf
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Acquisition

Unconstrained Acquisition
No distance control. inroducton to Biometrics

Springer Books, 2011
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Acquisition

Unconstrained Acquisition
No pose control.

Hsu

Face detection and
modeling for recognition
PhD Thesis, MSU, 2002.
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Acquisition
Problems

Presentation Attack
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Face Recognition

Saller Sensor
B o 4 X /
~
User .
presentation
\
Face Face
Acquisition Enhancement
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Enhancement

Face Detection

Goal . %'
Localize faces for segmentation [- \ l
and further recognition. ‘ 1

https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/
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Face Detection

Challenges

Megapixel image

Nearly millions of possible
locations and scales combined.

False positives should be

Enhancement
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Source: Hu et al., Finding Tiny Faces, 2016 (https://arxiv.org/abs/1612.04402)
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Enhancement

Face Detection

|-

; 'gorld's fargestiSelfies
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State of the Art

Megapixel image

Nearly millions of possible
locations, scales,

and poses combined.
Detection and pose estimation.
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Source: Albiero et al.

Aval I a b I e at img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

https://github.com/vitoralbiero/img2pose
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Enhancement

Face Detection

Methods
Either based on sliding windows
or on regions of interest.
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Enhancement
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Enhancement

Face Detection

Regions of Interest
Techniques from Computer
Vision or Machine Learning
to segment regions.

E.g., Maximally Stable
Extremal Regions (MSERI) or
Deep Local Features (DELFZ).

1. Matas et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. BMVC 2002.
2. Noh et al. Large-Scale Image Retrieval with Attentive Deep Local Features. ICCV 2017.
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Enhancement

|
F D I n SECOND INTERNATIONAL WORKSHOP ON STATISTICAL AND COMPUTATIONAL THEORIES OF
VISION — MODELING, LEARNING, COMPUTING, AND SAMPLING

VANCOUVER, CANADA, JULY 13, 2001.

Robust Real-time Object Detection

Vi O I a - J O n es D ete CtO r Paul Viola Michael Jones

vicla@merl.com mjones@crl .dec.com
u u Mitsubishi Electric Research Labs Compaq CRL
F I rSt rea I —t I m e faC e d eteCtO r 201 Broadway, 8th FL One Cambridge Center
" Cambridge, MA 02139 Cambridge, MA 02142

Based on sliding windows.

This paper describes a visual object detection framework that is capable of processing images extremely
rapidly while achieving high detection rates. There are three key contributions. The first is the introduction
of a new image representation called the “Integral Image” which allows the features used by our detector

to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small

number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a
Ke I d e a S 4 method for combining classifiers in a “cascade " which allows background regions of the image to be quickly
discarded while spending more computation on promising object-like regions. A set of experiments in the

domain of face detection are presented. The system yields face detection performace comparable to the best

|
previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15
a a r I e e a u re S [ ] frames per second.

1. Introduction

]
I I l t e g ra | I I I I ag e This paper brings together new algorithms and insights to construct a framework for robust and extremely
|

rapid object detection. This framework is demonstrated on, and in part motivated by, the task of face

detection. Toward this end we have constructed a frontal face detection system which achieves detection and

] "
B O O St I n g fO r fe ; i t l | re S e I e Ct I O n false positive rates which are equivalent to the best published results [18, 13 16, 12, 1]. This face detection
]

system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.

Operating on 384 by 288 pixel images, faces are detected at 15 frames per second on a conventional 700

Attentional Cascade to reject non-faces. 1
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Enhancement

|
F D t t I n SECOND INTERNATIONAL WORKSHOP ON STATISTICAL AND COMPUTATIONAL THEORIES OF
VISION — MODELING, LEARNING, COMPUTING, AND SAMPLING

VANCOUVER, CANADA, JULY 13, 2001.

Robust Real-time Object Detection

Vi O I a - J O n es D ete CtO r Paul Viola Michael Jones

vicla@merl.com mjones@crl .dec.com
u u Mitsubishi Electric Research Labs Compaq CRL
F I rSt rea I —t I m e faC e d eteCtO r 201 Broadway, 8th FL One Cambridge Center
" Cambridge, MA 02139 Cambridge, MA 02142

Based on sliding windows.

This paper describes a visual object detection framework that is capable of processing images extremely
rapidly while achieving high detection rates. There are three key contributions. The first is the introduction
of a new image representation called the “Integral Image" which allows the features used by our detector

to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small

number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a

K e I d e a S 4 method for combining classifiers in a “cascade " which allows background regions of the image to be quickly
y discarded while spending more computation on promising object-like regions. A set of experiments in the

domain of face detection are presented. The system yields face detection performace comparable to the best

H I . f t previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15
[ frames per second.

1. Introduction

]
I I l t e g ra | I I I I ag e This paper brings together new algorithms and insights to construct a framework for robust and extremely
|

rapid object detection. This framework is demonstrated on, and in part motivated by, the task of face

. . detection. Toward this end we have constructed a frontal face detection system which achieves detection and
B O O St I n fO r fe at l | re S e I e Ct I O n false positive rates which are equivalent to the best published results [18, 13, 16, 12, 1). This face detection
u system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.

Operating on 384 by 288 pixel images, faces are detected at 15 frames per second on a conventional 700

Attentional Cascade to reject non-faces. 1
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Enhancement

Viola-Jones Detector

: Filter t
Haar-Like Features (1/4) 2.3, and 4 rectangles.
Binary rectangle filters
used to extract features
from the sliding window. 2
value = Z pixels in white area — Z pixels in black area
3 4
@ LOYOLA
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Enhancement

Good to Good to
Viola-Jdones Detector detect eyes. de;:g; nose

-
Haar-Like Features (1/4) =
Take a 24-by-24-pixel

i
window. - || I : — ' __

The number of possible . _
features is nearly 160,000. yo e ] = R R

How to apply and how to select
features fast?
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Enhancement

|
F D t t I n SECOND INTERNATIONAL WORKSHOP ON STATISTICAL AND COMPUTATIONAL THEORIES OF
VISION — MODELING, LEARNING, COMPUTING, AND SAMPLING

VANCOUVER, CANADA, JULY 13, 2001.

Robust Real-time Object Detection

Vi O I a - J O n es D ete CtO r Paul Viola Michael Jones

vicla@merl.com mjones@crl .dec.com
u u Mitsubishi Electric Research Labs Compaq CRL
F I rSt rea I —t I m e faC e d eteCtO r 201 Broadway, 8th FL One Cambridge Center
" Cambridge, MA 02139 Cambridge, MA 02142

Based on sliding windows.

This paper describes a visual object detection framework that is capable of processing images extremely
rapidly while achieving high detection rates. There are three key contributions. The first is the introduction
of a new image representation called the “Integral Image" which allows the features used by our detector

to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small

number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a

K e I d e a S 4 method for combining classifiers in a “cascade " which allows background regions of the image to be quickly
y discarded while spending more computation on promising object-like regions. A set of experiments in the

domain of face detection are presented. The system yields face detection performace comparable to the best

]
previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15
a a r I e e a u re S [ ] frames per second.

1. Introduction

|
I n te g ra I I m a g e [ | This paper brings together new algorithms and insights to construct a framework for robust and extremely

rapid object detection. This framework is demonstrated on, and in part motivated by, the task of face

. . detection. Toward this end we have constructed a frontal face detection system which achieves detection and
B O O St I n fO r fe at l | re S e I e Ct I O n false positive rates which are equivalent to the best published results [18, 13, 16, 12, 1). This face detection
u system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.

Operating on 384 by 288 pixel images, faces are detected at 15 frames per second on a conventional 700

Attentional Cascade to reject non-faces. 1

LOYOLA

30 %" UNIVERSITY CHICAGO

OV - AV
GLORIAM




Viola-Jones Detector

Integral Image (2/4)
Solution to apply Haar-like
features fast.

Precomputed data structure
with the same dimensions of
the target image.

Enhancement

31

Target Image

(X,Y)

Integral Image
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Enhancement

Viola-Jones Detector

Integral Image (2/4) “‘a °nm
Remember Haar feature value: c D
value = Z pixels in white area — Z pixels in black area

Integral images allow the computation

of the sum of pixel values in any target
area In constant time, regardless of the
size of the area.

Sum of pixels in red area
content =D—-B—-C+A

Only and always 4 accesses.
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Enhancement

[ |
F D t t I n SECOND INTERNATIONAL WORKSHOP ON STATISTICAL AND COMPUTATIONAL THEORIES OF
VISION — MODELING, LEARNING, COMPUTING, AND SAMPLING

VANCOUVER, CANADA, JULY 13, 2001.

Robust Real-time Object Detection

Vi O I a - J O n es D ete CtO r Paul Viola Michael Jones

vicla@merl.com mjones@crl .dec.com
u u Mitsubishi Electric Research Labs Compaq CRL
F I rSt rea I —t I m e faC e d eteCtO r 201 Broadway, 8th FL One Cambridge Center
" Cambridge, MA 02139 Cambridge, MA 02142

Based on sliding windows.

This paper describes a visual object detection framework that is capable of processing images extremely
rapidly while achieving high detection rates. There are three key contributions. The first is the introduction
of a new image representation called the “Integral Image" which allows the features used by our detector
to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small

number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a
K e I d e a S 4 method for combining classifiers in a “cascade " which allows background regions of the image to be quickly
y discarded while spending more computation on promising object-like regions. A set of experiments in the

domain of face detection are presented. The system yields face detection performace comparable to the best

. -
previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15
a a r I e e a u re S u frames per second.

1. Introduction

]
I I l t e g ra | I I I I ag e . This paper brings together new algorithms and insights to construct a framework for robust and extremely

rapid object detection. This framework is demonstrated on, and in part motivated by, the task of face

detection. Toward this end we have constructed a frontal face detection system which achieves detection and

| |
B o 0 St I n fo r fe at u re S e I e ct I O n false positive rates which are equivalent to the best published results [18, 13 16, 12, 1]. This face detection
u system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.

Operating on 384 by 288 pixel images, faces are detected at 15 frames per second on a conventional 700

Attentional Cascade to reject non-faces. 1
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Enhancement

Viola-Jones Detector

Boosting for -

Feature Selection (3/4) -
Goal: select combinations of ——
Haar-like features that are useful y
for face detection. - '.
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Viola-Jones Detector

Boosting for

Feature Selection (3/4)

Solution: boosting, a combination
of weak classifiers that when
learned in sequence and applied
together, lead to better final
classification.

39

Enhancement

Training lllustration

Weak Learner
\ ‘
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Source: Dr. Walter Scheirer
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Viola-Jones Detector

Boosting for

Feature Selection (3/4)

Solution: boosting, a combination
of weak classifiers that when
learned in sequence and applied
together, lead to better final
classification.

36

Enhancement

Training lllustration

Importance _

Increased \

B Faces

] Non-faces

y

Source: Dr. Walter Scheirer
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Viola-Jones Detector

Boosting for

Feature Selection (3/4)

Solution: boosting, a combination
of weak classifiers that when
learned in sequence and applied
together, lead to better final
classification.

37

Enhancement

Training lllustration

Weak Learner 2 —
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] Non-faces
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Viola-Jones Detector

Boosting for

Feature Selection (3/4)

Solution: boosting, a combination
of weak classifiers that when
learned in sequence and applied
together, lead to better final
classification.

33

Enhancement

Training lllustration

Importance
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Viola-Jones Detector

Boosting for

Feature Selection (3/4)

Solution: boosting, a combination
of weak classifiers that when
learned in sequence and applied
together, lead to better final
classification.

39

Enhancement

Training lllustration

Weak Learner 3 -

B Faces
] Non-faces
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Source: Dr. Walter Scheirer
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Viola-Jones Detector

Boosting for

Feature Selection (3/4)

Solution: boosting, a combination
of weak classifiers that when
learned in sequence and applied
together, lead to better final
classification.

40
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Enhancement

Viola-Jones Detector

Boosting for
Feature Selection (3/4)
Possible outcome.

This combination is enough First two selected features.

to lead to perfect True Positive Rate,

but poor False Positive Rate.
Whenever this classifier says an
object is not a face (rejection),

All faces are detected as positive, but many it is probably right

non-faces are detected as positive too.
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Enhancement

[ |
F D t t I n SECOND INTERNATIONAL WORKSHOP ON STATISTICAL AND COMPUTATIONAL THEORIES OF
VISION — MODELING, LEARNING, COMPUTING, AND SAMPLING

VANCOUVER, CANADA, JULY 13, 2001.

Robust Real-time Object Detection

Vi O I a - J O n es D ete CtO r Paul Viola Michael Jones

vicla@merl.com mjones@crl .dec.com
u u Mitsubishi Electric Research Labs Compaq CRL
F I rSt rea I —t I m e faC e d eteCtO r 201 Broadway, 8th FL One Cambridge Center
" Cambridge, MA 02139 Cambridge, MA 02142

Based on sliding windows.

This paper describes a visual object detection framework that is capable of processing images extremely
rapidly while achieving high detection rates. There are three key contributions. The first is the introduction
of a new image representation called the “Integral Image" which allows the features used by our detector
to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small

number of critical visual features and yields extremely efficient classifiers [6]. The third contribution is a
K e I d e a S 4 method for combining classifiers in a “cascade " which allows background regions of the image to be quickly
y discarded while spending more computation on promising object-like regions. A set of experiments in the

domain of face detection are presented. The system yields face detection performace comparable to the best

. -
previous systems [18, 13, 16, 12, 1]. Implemented on a conventional desktop, face detection proceeds at 15
a a r I e e a u re S u frames per second.

1. Introduction

]
I I l t e g ra | I I I I ag e . This paper brings together new algorithms and insights to construct a framework for robust and extremely

rapid object detection. This framework is demonstrated on, and in part motivated by, the task of face

n x detection. Toward this end we have constructed a frontal face detection system which achieves detection and
B O O St I n fO r fe ; i t l | re S e I e Ct I O n false positive rates which are equivalent to the best published results [18, 13 16, 12, 1]. This face detection
. system is most clearly distinguished from previous approaches in its ability to detect faces extremely rapidly.

Operating on 384 by 288 pixel images, faces are detected at 15 frames per second on a conventional 700

Attentional Cascade to reject non-faces. 1
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Enhancement

Viola-Jones Detector

Attentional Cascade (4/4)
Make a cascade of different

True True True

classifiers that are good at Window —( & — Yes, face!
rejecting faces. | False | False False
No Face No Face No Face
Start with simpler and
faster classifiers.
7 LOYOLA

x~ UNIVERSITY CHICAGO
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Enhancement

Viola-Jones Detector

Jain, Ross, and Nadakumar

R e S u ItS Introduction to Biometrics

Springer Books, 2011

clean background cluttered background tilted head upside down
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Enhancement

Viola-Jones Detector

Resu Its Jain, Ross, and Nadakumar

Introduction to Biometrics
Springer Books, 2011
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Face Detection

Attack

Non-live faces and some
special patterns may be
used to trigger the face
detector on purpose.

If it happens too often,
it will flood the system.

Enhancement

Support The Guardian

Available for everyone, funded by readers

O Sign in
" The,.
Guardian

News 'Opinion Sport Culture ' Lifestyle e

World » Europe US Americas Asia Australia Middle East Africa Inequality More

Surveillance

© This article is more than 6 months old

The fashion line designed to trick
surveillance cameras

https://www.theguardian.com/world/2019/aug/13/the-

fashion-line-designed-to-trick-surveillance-cameras
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Enhancement

Face Detection https://twitter.com/glichfield/

status/925425702194810882

Attack
Make-up can be used
to hinder detection.
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Face Alignment

Goal
Make template and sample

faces be In similar poses,
to make further description
and matching easier.

48

Enhancement
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Enhancement

Face Alignment

Jain, Ross, and Nadakumar
Introduction to Biometrics
Springer Books, 2011

Detection of

Face Landmarks
E.Q., position of eyes.

Possible solution: eye detection using Viola-Jones
approach.
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Enhancement

Face Alignment

Detection of

Face Landmarks

There are better solutions
In the literature, using
deep neural networks,
for instance.

Zhang et al.

Facial Landmark Detection by Deep Multi-task Learning

ECCV 2014
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Enhancement

Face Alignment

Landmark Alignment

E.g., make the positions of
the eyes horizontally aligned,
by rotating the face image.

http://www.bytefish.de/blog/aligning_face_images/

= =
~ <<
= =
EA ~
0 O
K ]
'/ll . \\\"

v~ UNIVERSITY CHICAGO

o1




Enhancement

Face Alignment

Cropping
Make a tight crop of the
face, to remove background.

Keep eyes, nose, and mouth.

http://www.bytefish.de/blog/aligning_face_images/
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Enhancement

Face Alignment

More Severe

Pose Variations
Naive approach will not work.
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Enhancement

Face Alignment

Yi et al.
Towards Pose Robust Face Recognition
CVPR 2013
More Severe
template sample

Pose Variations
Alternative approaches.
3D information will help
to do frontalization.

transform |

Frontalization
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Enhancement

Face Alignment

More Severe

Pose Variations
Alternative approaches.
3D information will help
to do frontalization.

Banerjee etal.

To frontalize or not to frontalize: Do we really need elaborate
pre-processing to improve face recognition?

WACV 2018
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Enhancement

lHlumination Correction

Simplest Solution
Color histogram

equalization.
Alternatives Oriain - | - alived
: : : rigina rayscaile uallze
Photometric normalization, J 4 :
Illumination modeling, etc.
@ LOYOLA
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What’s Next?

Face Description and
Matching

Fill out your
Today-I-missed Statement
Please visit
https://sakai.luc.edu/x/
HAZC1P.
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