1st Coding Class COMP 388-002/488-002 Biometrics

Inspect the Implementation of metrics to compare Biometric systems.

Today we will...

Today's Attendance

Please fill out the form

https://forms.gle/LHw8biWGQiXMUKbK8

similarity s

In Practice False Non-Match Rate (FNMR) and False Match Rate (FMR)

 $FNMR(\tau) = \frac{\#(false \ nonmatches \ for \ \tau)}{\#(genuine \ comparisons)}$

 $FMR(\tau) = \frac{\#(false \ matches \ for \ \tau)}{\#(impostor \ comparisons)}$

In Practice False Non-Match Rate (FNMR) and False Match Rate (FMR)

 $FNMR(\tau) = \frac{\#(false \ nonmatches \ for \ \tau)}{\#(genuine \ comparisons)}$

 $FMR(\tau) = \frac{\#(false \ matches \ for \ \tau)}{\#(impostor \ comparisons)}$

How many of the genuine comparisons are wrongly computed by the system?

How many of the impostor comparisons are wrongly computed by the system?

In Practice Interpretation of *R values.

Suppose a face recognition system with FMR=0.1% FMR=0.001, one error in every 1K comparisons. Is it good?

Suppose the Newark airport

5K people per hour, 14h per day (70K people per day) Suppose a suspect watch list with 100K people: 7 billion comparisons per day. Average number of false matches per day: 7 million people to double check every day.

8

Terrorist watch list in 2016: 1,8 million people

What is the impact of changing the decision threshold?

The larger the value of τ : The larger the value of FNM; The smaller the value of FM.

FNM and FM are inversely proportional.

What to choose?

Small FNMR

Suitable to avoid denial of access and repudiation.

Increases intrusion probability, though.

Small FMR

Suitable to avoid intrusion. Increases denial of service and repudiation probability, though.

FMR FNMR

What to choose?

Equal Error Rate (EER)

Common practice. Pick the threshold where FNMR = FMR.

similarity s

How to compare two different systems? Biometric systems A and B.

Compare both systems' FNMR and FMR at EER (1/3) Take the one with smaller FNMR and FMR values.

Metrics

How to compare two different systems? Biometric systems A and B.

Use a Receiver Operating Characteristic (ROC) curve (2/3)

Metrics

Compute FMR and FNMR for a variety How to compare two different systems? of thresholds. Biometric systems A and B.

How to compare two different systems? Biometric systems A and B.

Which one is better? Compute the Area Under The Curve (AUC). The best solution presents larger AUC.

How to compare two different systems? Biometric systems A and B.

Compute the difference between impostor and genuine distributions for each system (3/3)

impostor

genuine

Which one is better?

Take the one with better separation of impostor and genuine observations.

> It is System A! How do we compute it?

How to compare two different systems? Biometric systems A and B.

Compute the difference between impostor and genuine distributions for each system (3/3)

Hypothesis: the distributions are Gaussians Which one is better? Take the system with (with mean μ and standard deviation σ). larger **d-prime**:

$$d' = \frac{\sqrt{2} \times |\mu_{genuine} - \mu_{impostor}|}{\sqrt{\sigma_{genuine}^2 + \sigma_{impostor}^2}}$$

The larger the separation between the distributions, the larger the value of d-prime.

Other Metrics (1/4, 2/4)

Failure to Acquire (FTA)

Rate of falsely rejected biometric samples due to problems in acquisition.

Failure to Enroll (FTE) The same as FTA, but during enrollment.

Smithsonian SUBSCRIBE SMARTNEWS HISTORY SCIENCE INGENUITY ARTS & CULTURE

Adermatoglyphia: The Genetic Disorder Of **People Born Without Fingerprints**

The extremely rare disease causes no problems-apart from occasional difficulties with the authorities

SMITHSONIANMAG.COM JANUARY 14, 2014

https://www.smithsonianmag.com/sciencenature/adermatoglyphia-genetic-disorderpeople-born-without-fingerprints-180949338/

Other Metrics (3/4, 4/4)

Positive Metrics True Non-Match Rate (TNMR) TNMR = 1.0 - FMR

True Match Rate (TMR) TMR = 1.0 - FNMR

You want to maximize these instead of minimizing.

How to compare two different systems? Compute FMR and FNMR for a variety of thresholds.

How to compare two different systems? Compute FMR and FNMR for a variety of thresholds.

Implementation

Please open

https://tinyurl.com/ ya2zj7vu

What's Next?

Biometric System Attacks Threat model and attack types.

Fingerprint Recognition History and features.

Start filling out your *Today-I-missed* Statement https://sakai.luc.edu/x/HAZC1P.

