Feature Indexing COMP 388-002/488-002 Biometrics

Daniel Moreira Fall 2023

Today you will...

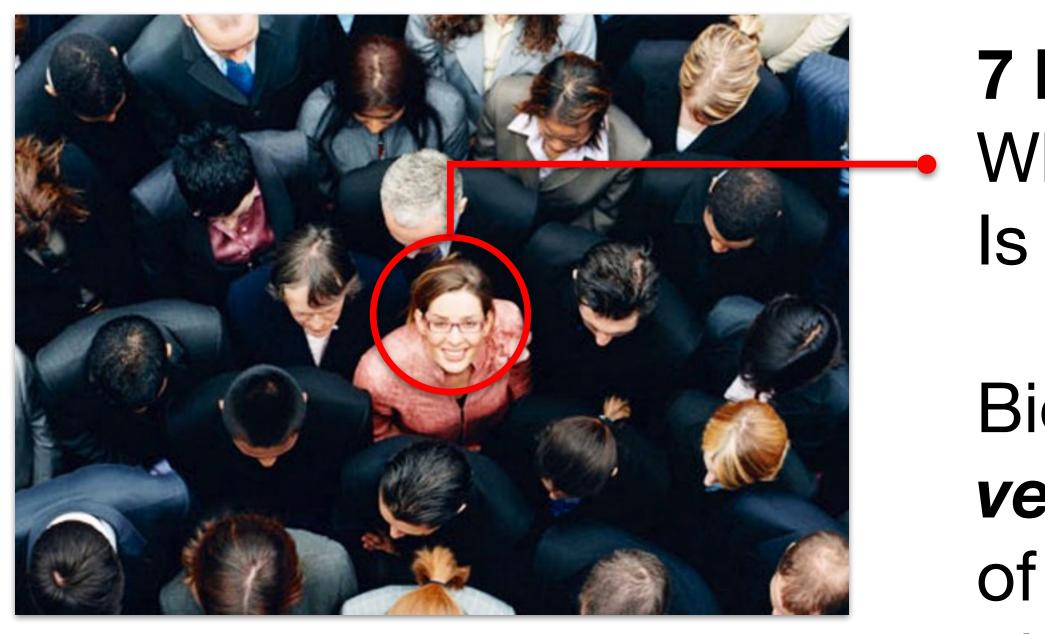
Get to know Methods of feature indexing for biometric identification.

Today's attendance

Please fill out the form

https://forms.gle/sjQKGKyMH7ogmPNa7

What is Biometrics?



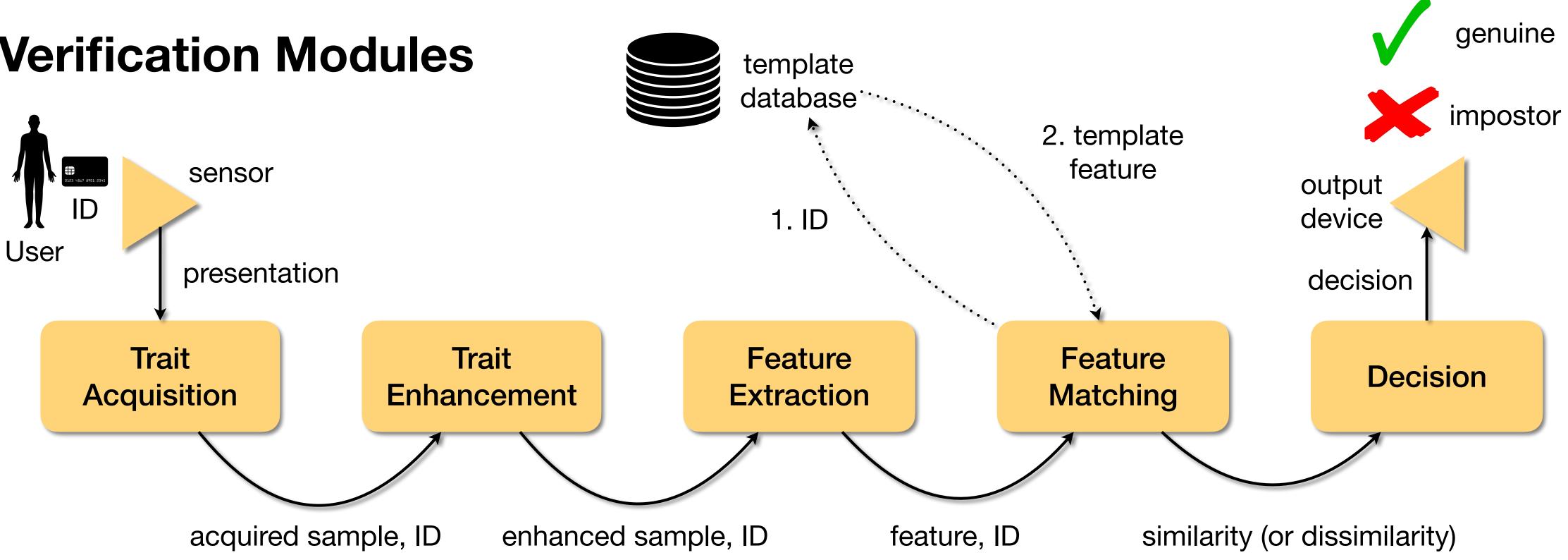
7 billion people

Who is this person? *(Identification)* Is this person Jane Doe? *(Verification)*

Biometrics aims at *identifying* or *verifying* the claimed or denied identity of an individual based on their *physical*, *chemical* or *behavioral* traits.

Biometric Systems

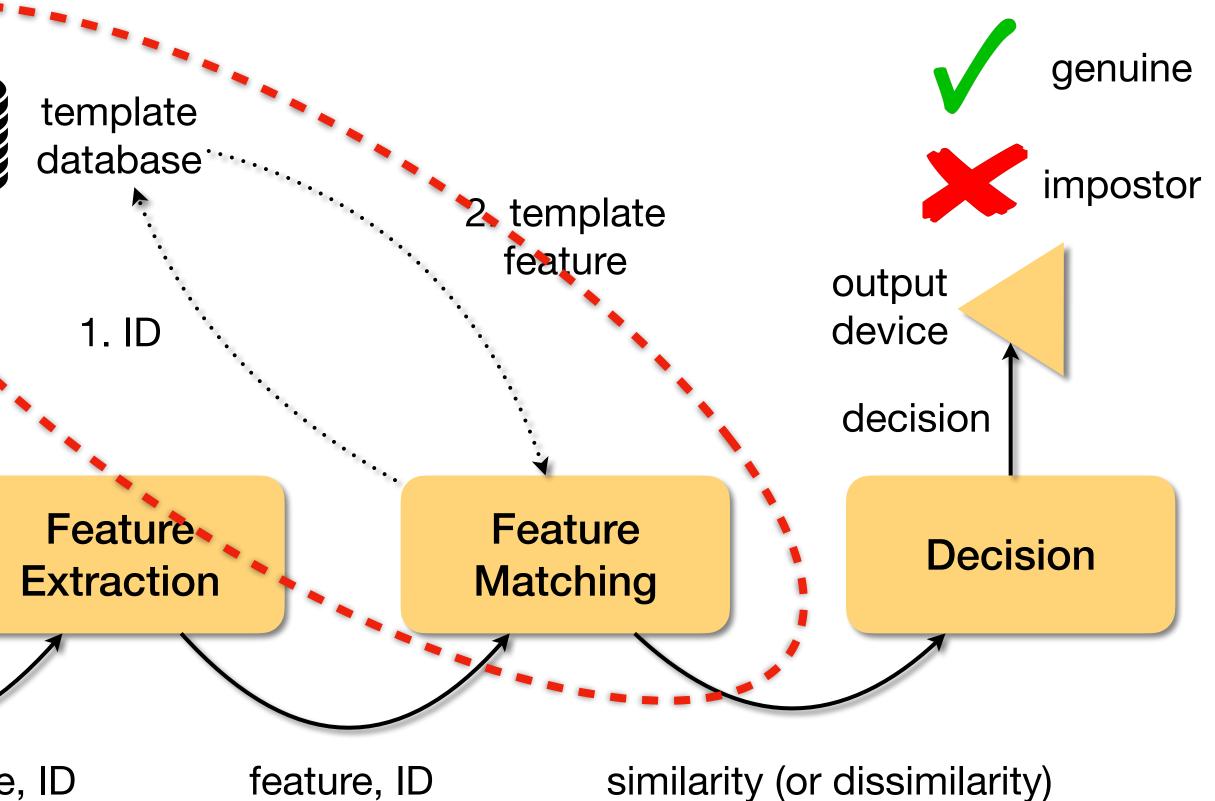
Verification Modules



Biometric Systems Verification Modules template database 2 template feature 0123 4567 8901 234 sensor 1. ID presentation

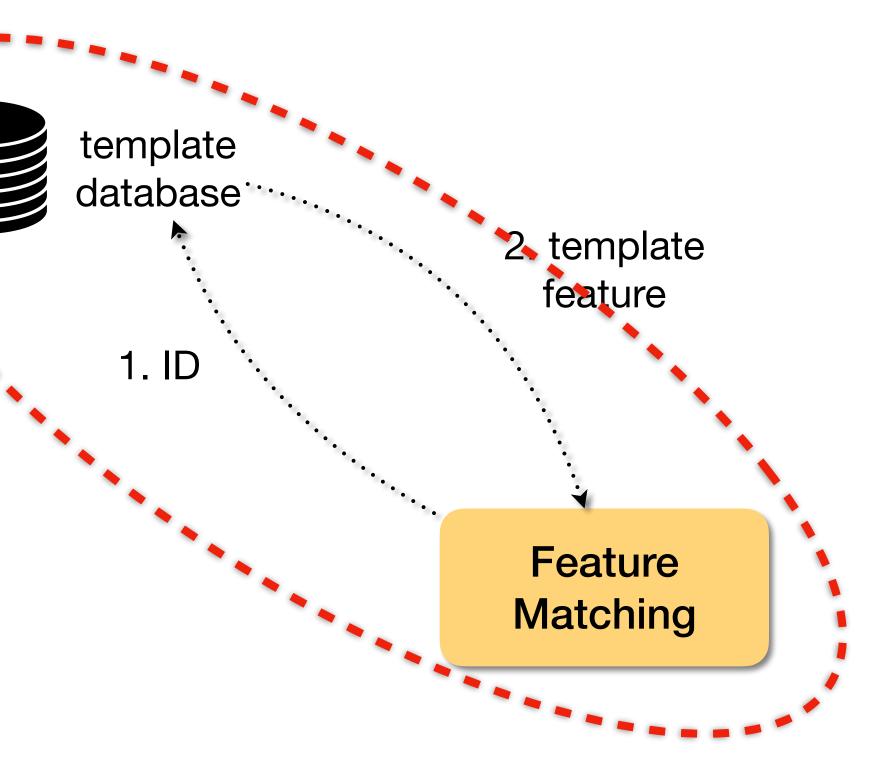
Trait Trait Acquisition Enhancement acquired sample, ID enhanced sample, ID

User



Biometric Verification

No need for complex feature indexing.



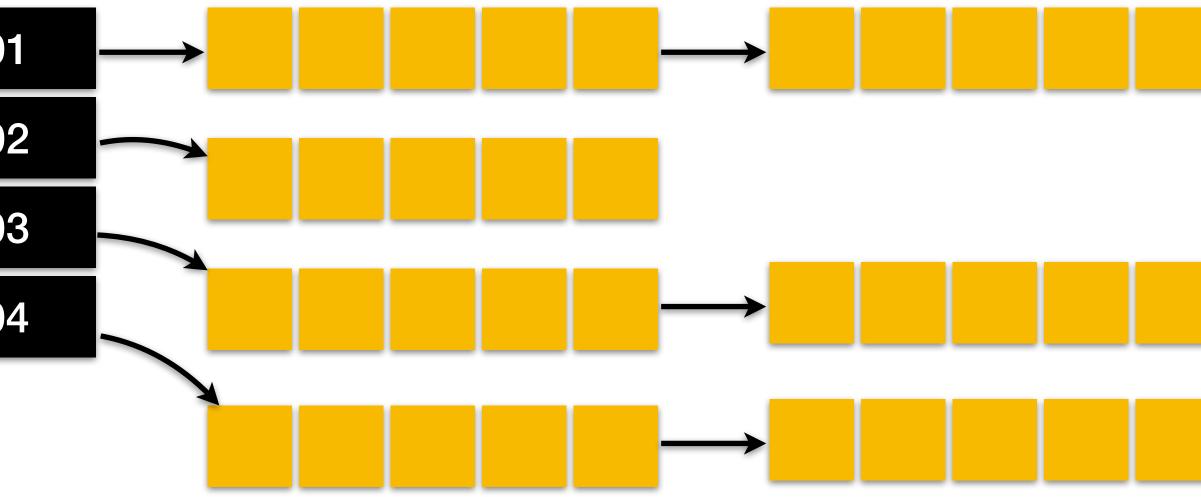
Biometric Verification

No need for complex feature indexing.

Use unique person's ID as index (or hash function input).

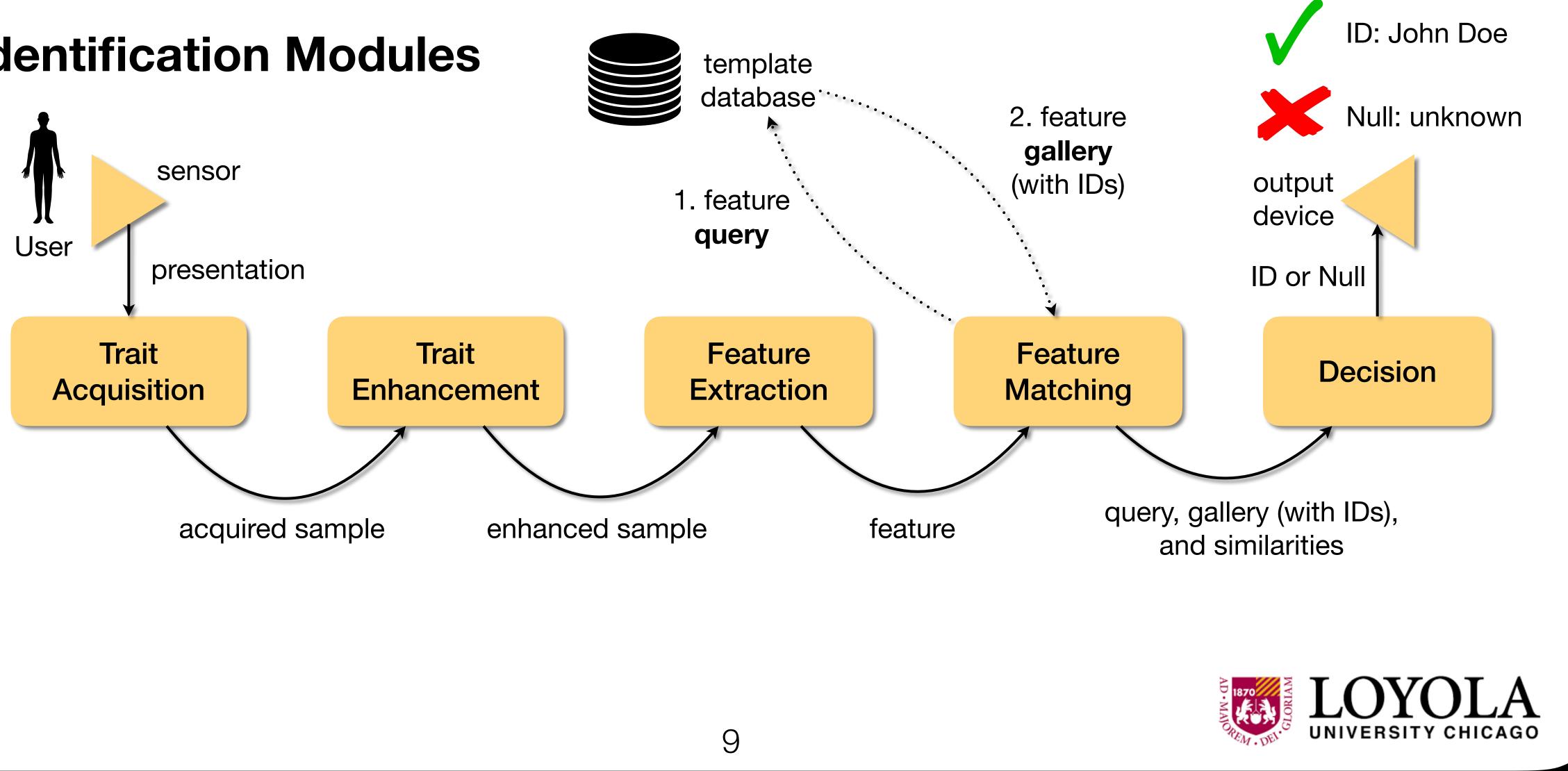
Retrieval of features in constant time.

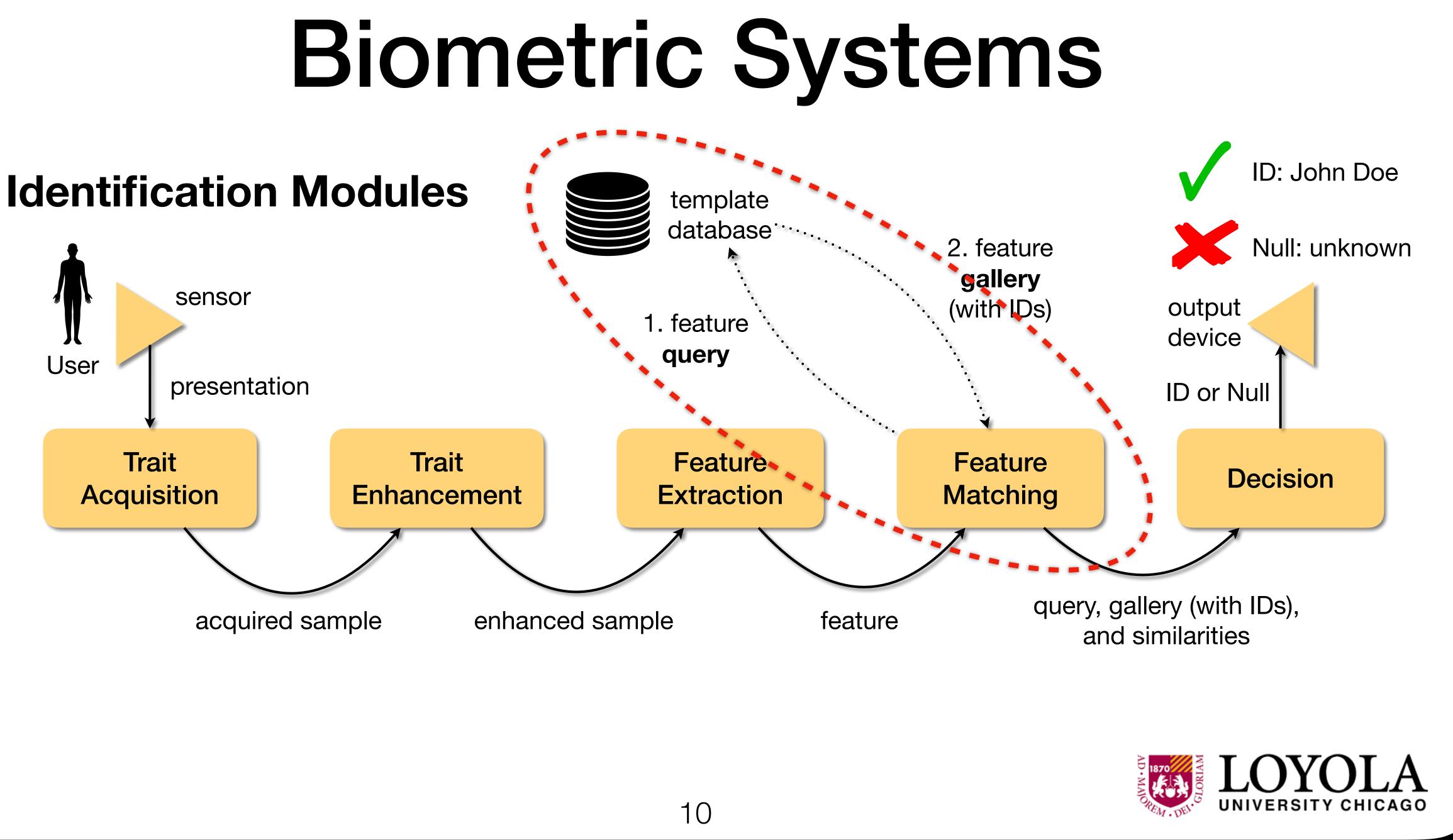
000
000
000
000



Biometric Systems

Identification Modules



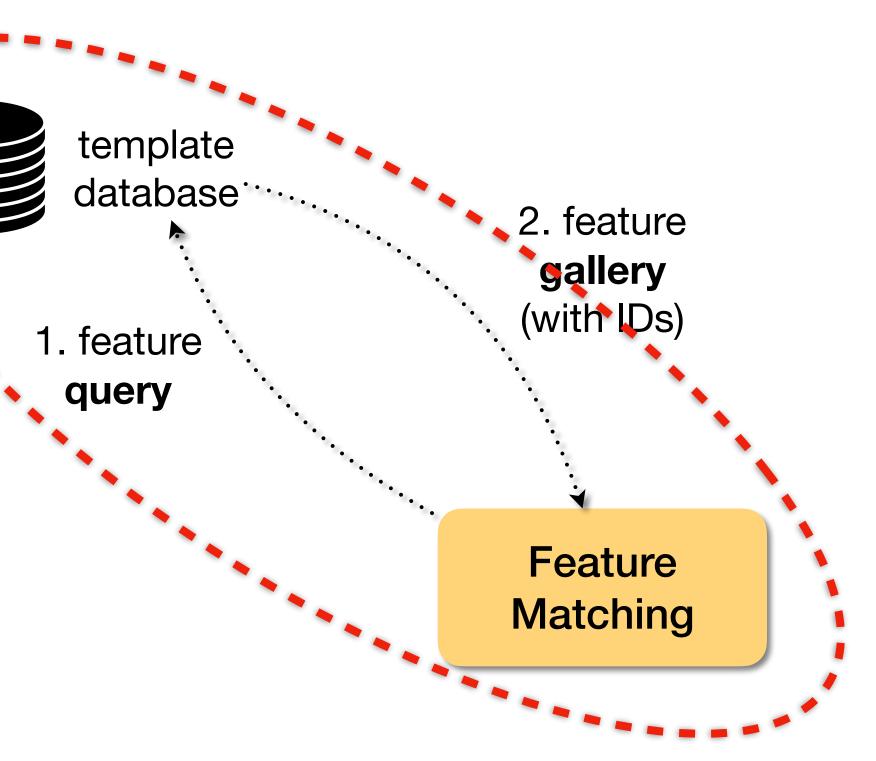


How to retrieve *k*-nearest features to compose gallery?

Need for more complex indexing.

Retrieval of features as quick as possible.

Biometric Identification



How to retrieve k-nearest features to compose gallery?

Need for more complex indexing.

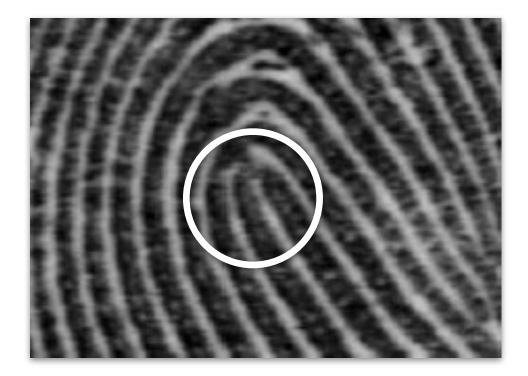
Retrieval of features as quick as possible.

Biometric Identification

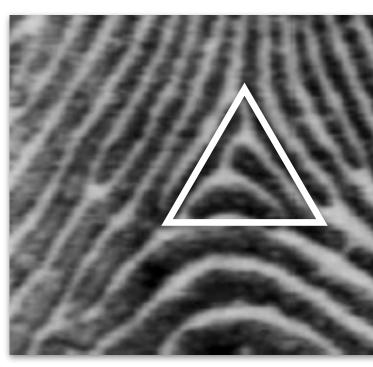
SO WHAT WOULD YOU DO?

Level-1 Features

Usage of Singular Points and Core



loop



delta



201

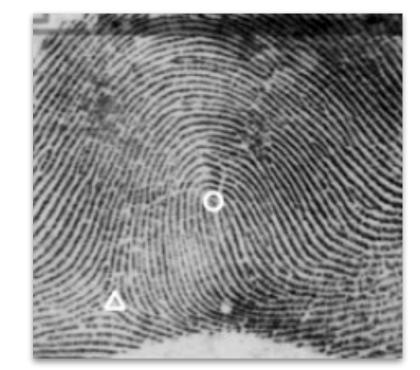
Level-1 Features

Usage of Singular Points and Core

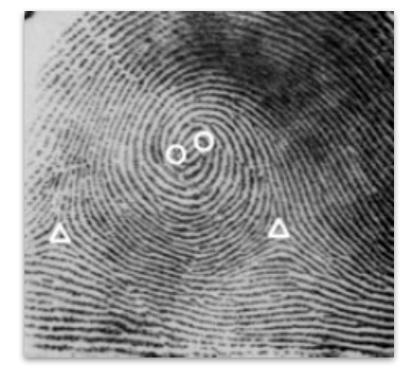
plain arch

tented arch

left loop

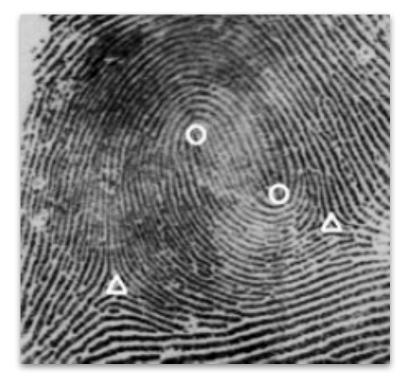


right loop



whorl

Jain, Ross, and Nadakumar Introduction to Biometrics Springer Books, 2011



twin loop

Level-1 Features

FBI Automated Fingerprint Identification system (AFIS) More than 200 million dactyloscopy cards. Varied quality of samples.

Thanks to fingerprint classification through level-1 features, this time is reduced to 20 min.

right loop left loop plain arch whorl (27.9%)(2.7%)(31.7%)(33.8%)central pocket tented arch double loop accidenta (2.9%)

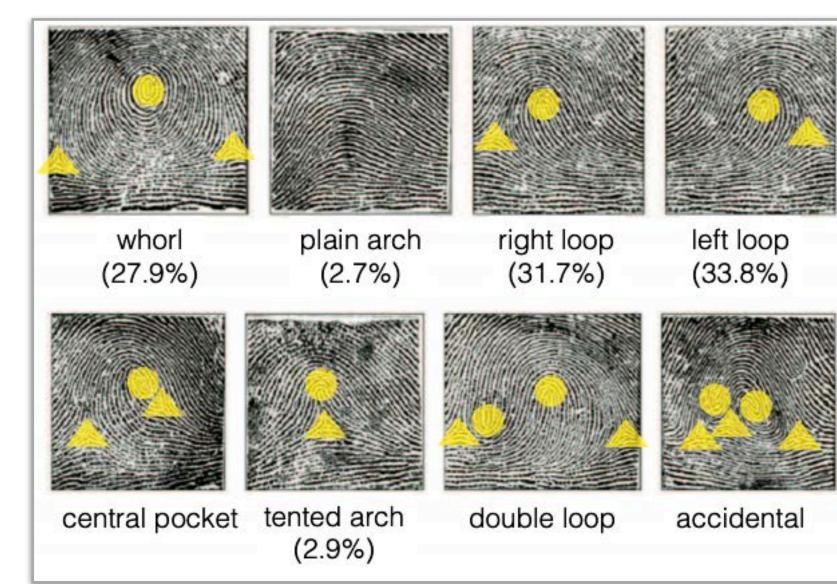
Henry's features, an alternative classification of level-1 features with 8 classes.

Level-1 Features

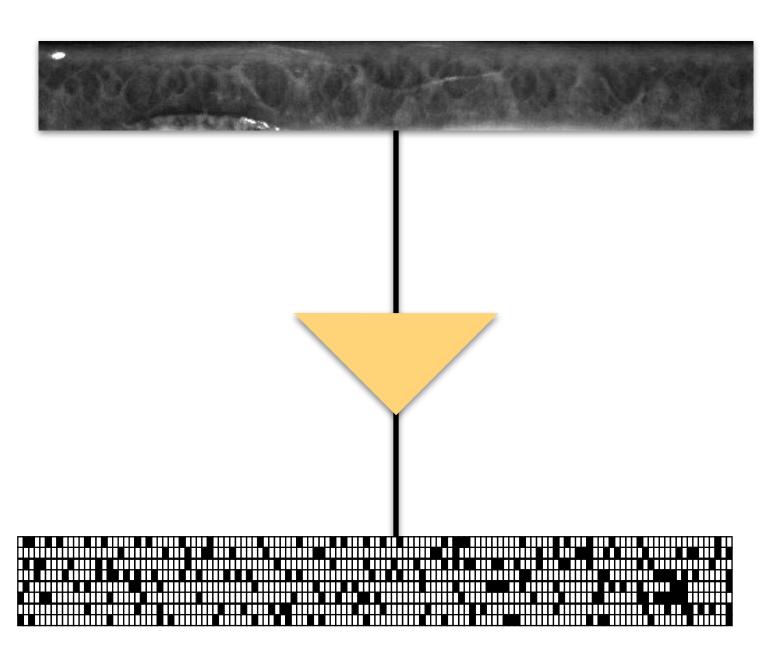
FBI Automated Fingerprint Identification system (AFIS) More than 200 million dactyloscopy cards. Varied quality of samples.

And a computer-based solution can do it in seconds, benefitting from the same features.

Henry's features, an alternative classification of level-1 features with 8 classes.



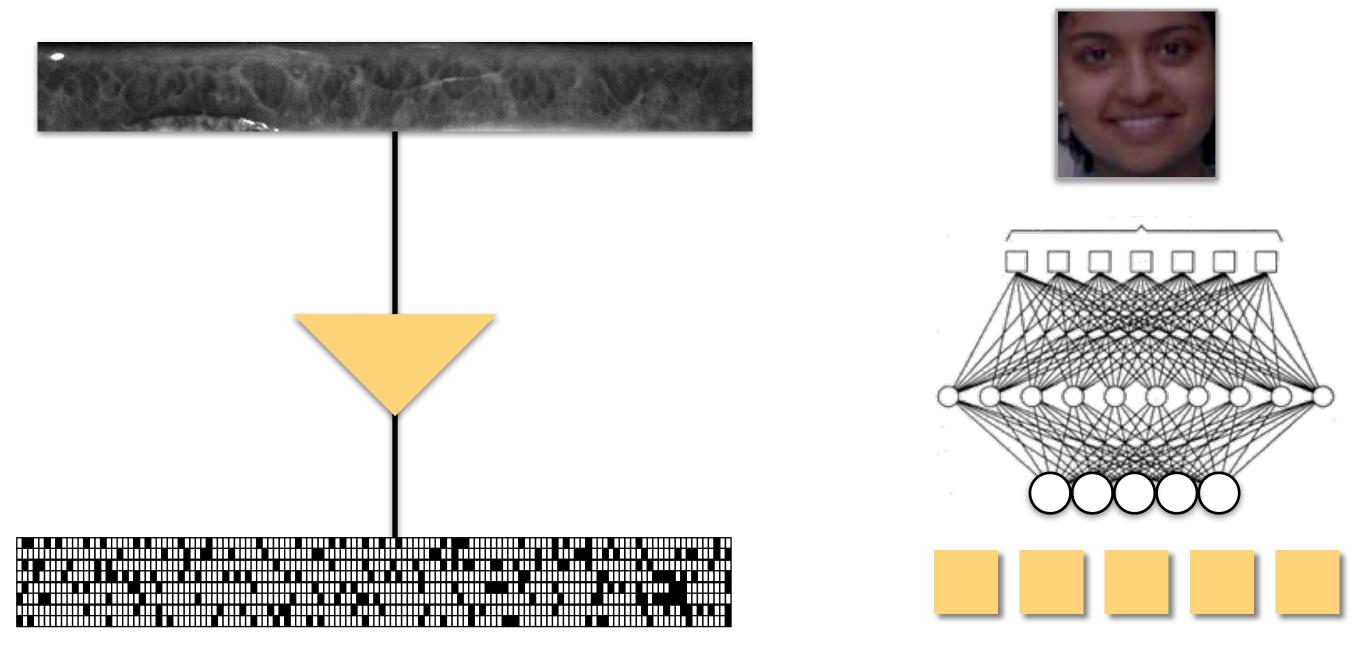
Iris Identification



2048 bits IrisCode

Iris Identification

Face Identification

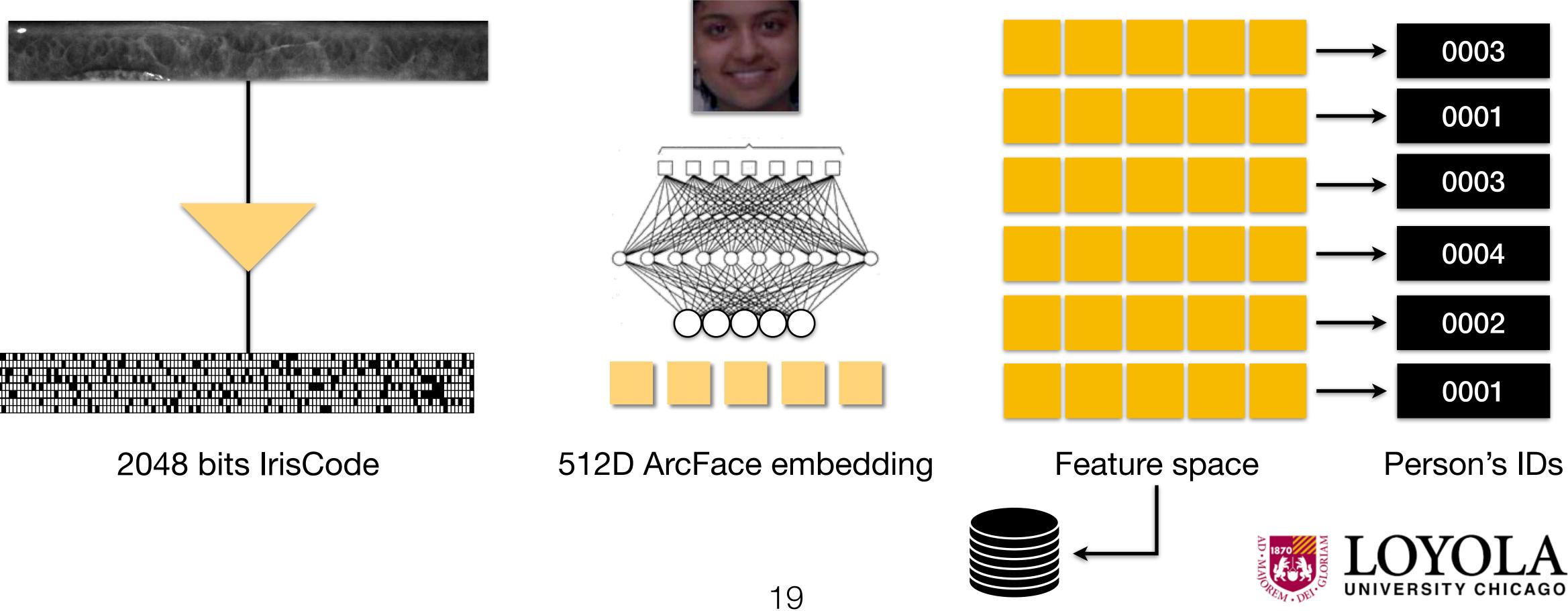


2048 bits IrisCode

512D ArcFace embedding

Iris Identification

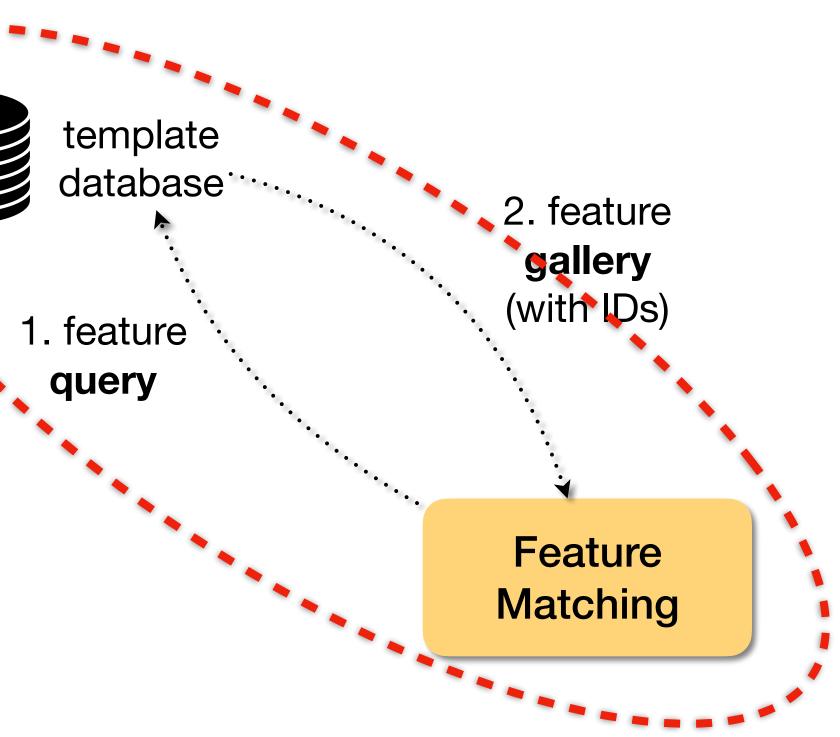
Face Identification



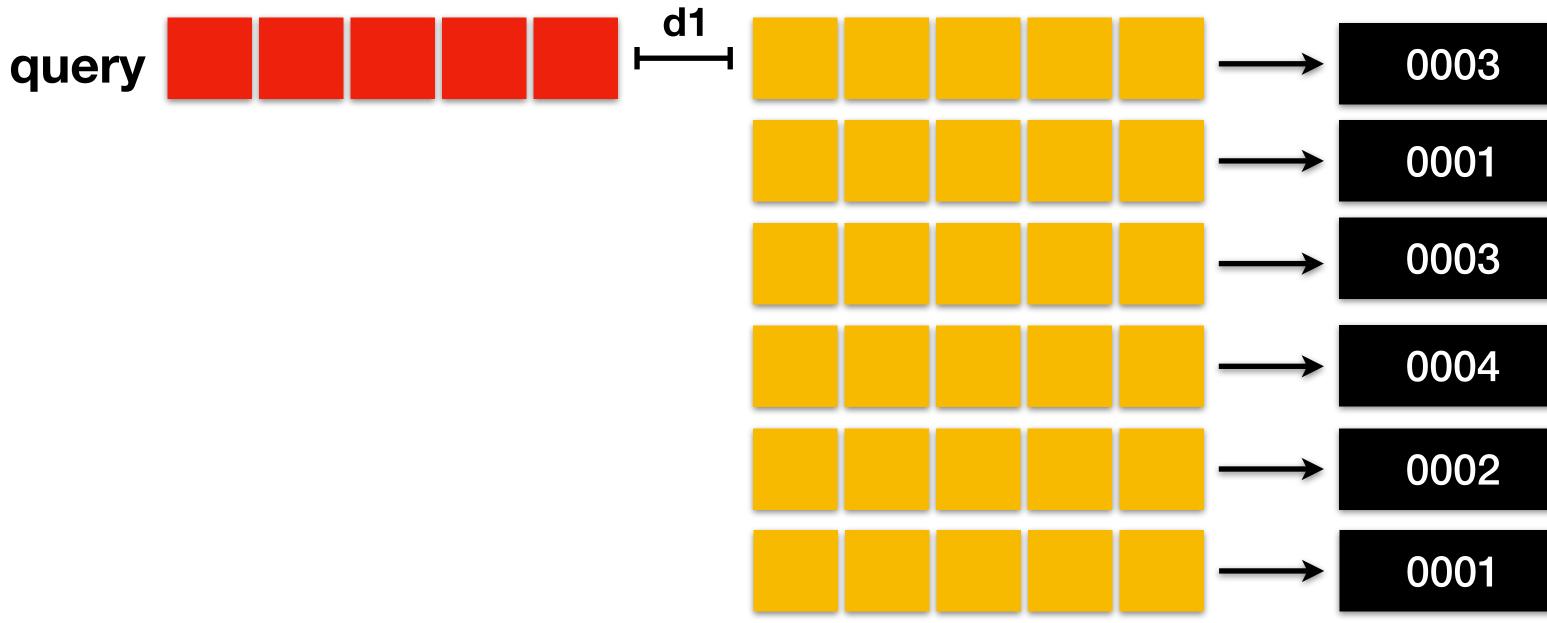
How to retrieve *k*-nearest features to compose gallery?

Need for more complex indexing.

Retrieval of features as quick as possible.



Brute Force Search

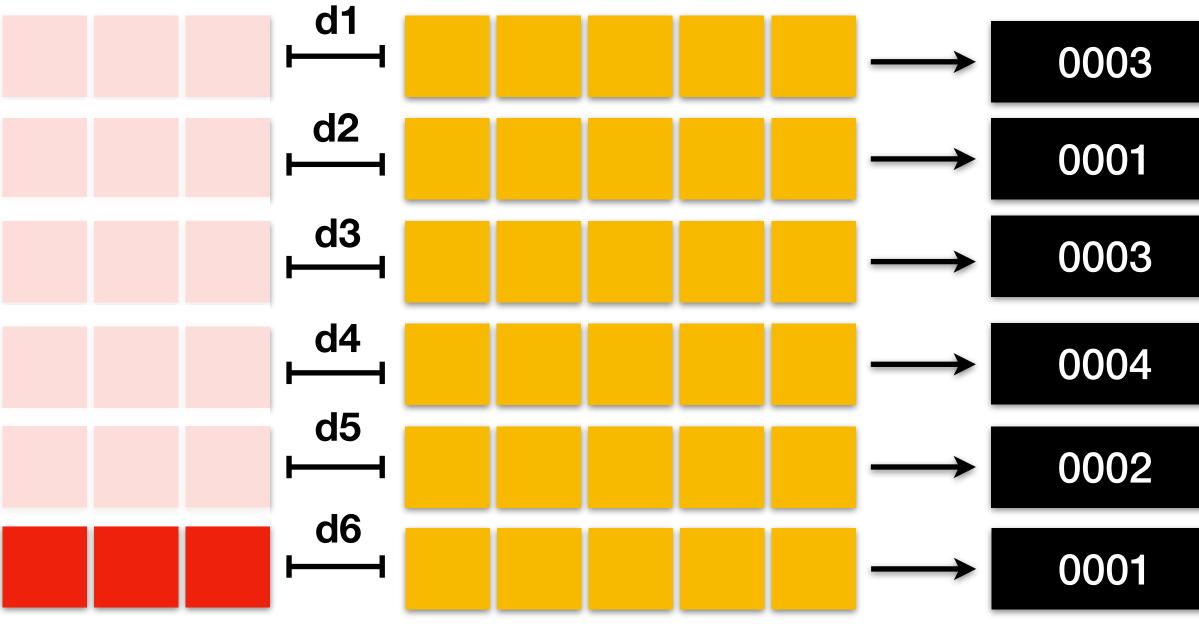


Brute Force Search

What is the computational complexity? Linear: *O(n)*, where *n* is the number of features.

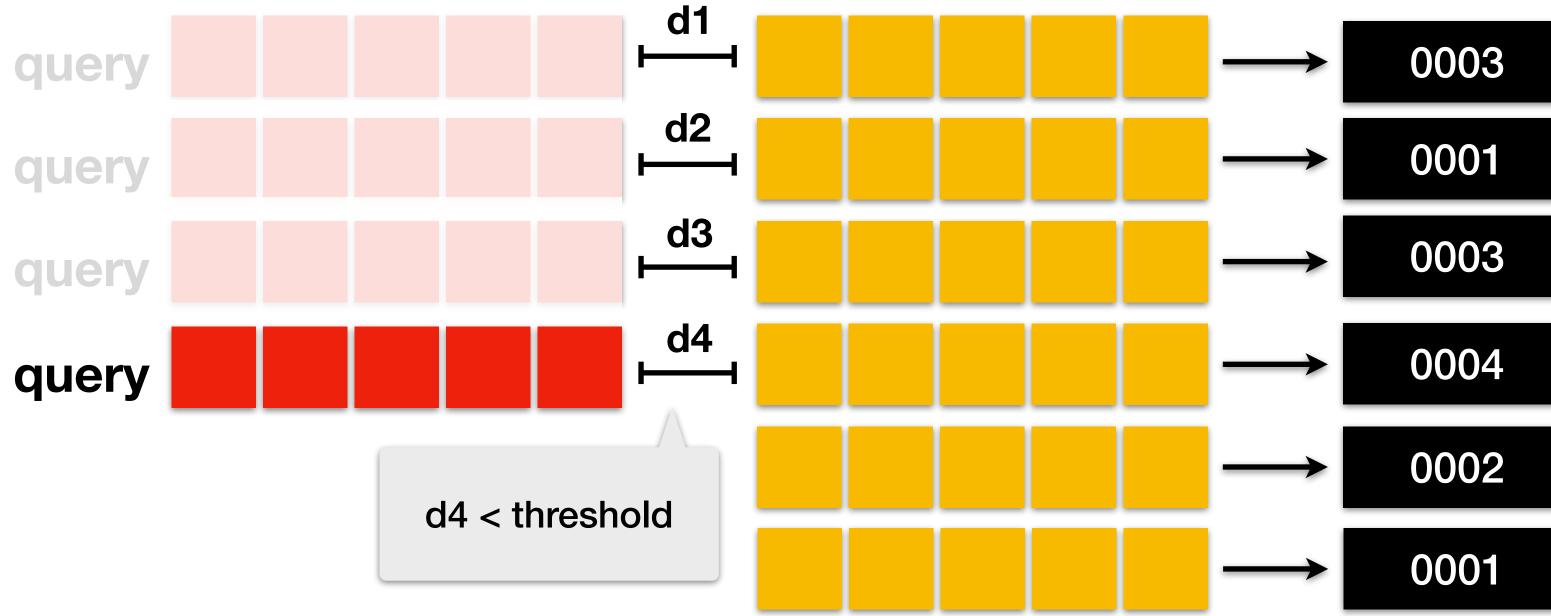
How to reduce it?

query query query query query query



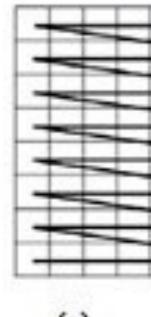
Early Stop Search

How to reduce complexity? Stop when you find a feature that is close enough.



How to reduce complexity?

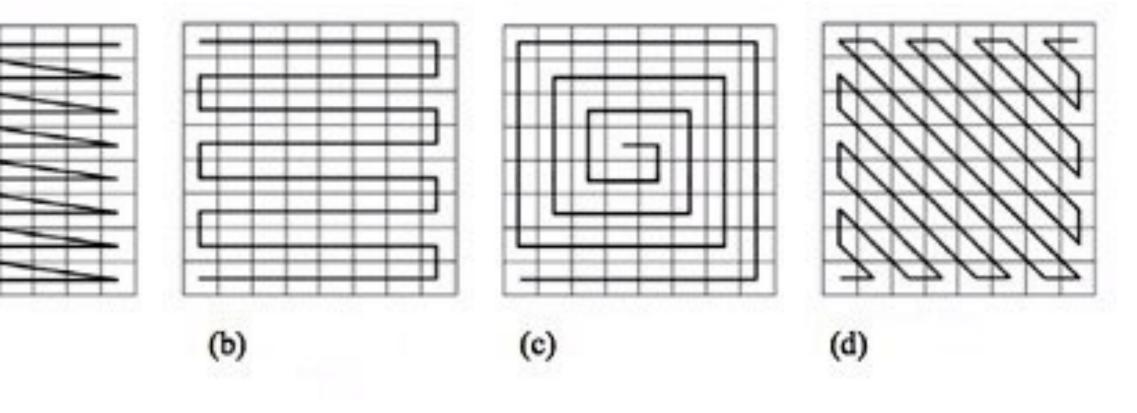
Curves determined by index mapping functions that pass once through every point of an N-dimensional space.

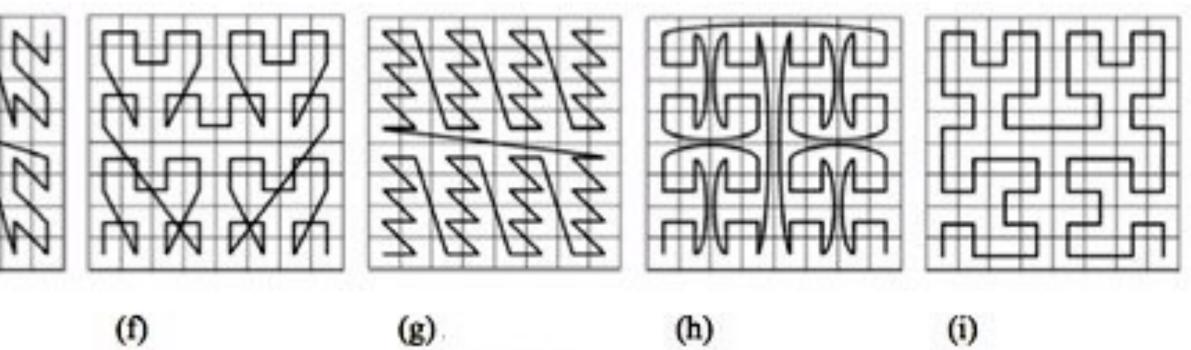


(a)

(e)

2D space examples

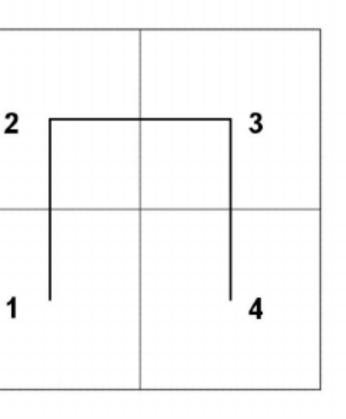


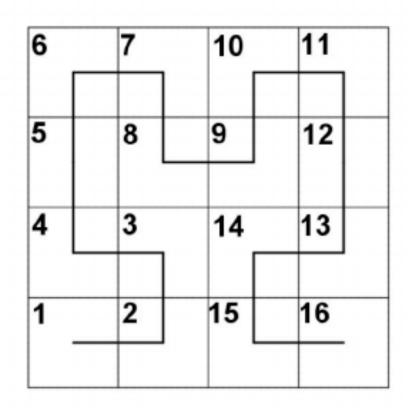


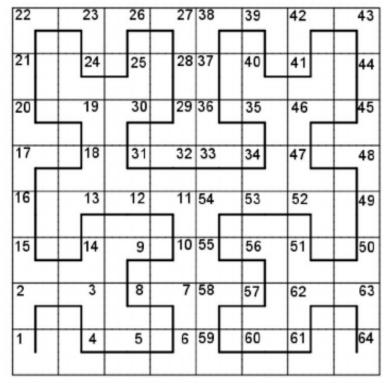
How to reduce complexity?

Curves determined by index mapping functions that pass once through every point of an N-dimensional space.

2D space examples







Hilbert curves

How to reduce complexity?

Curves determined by index mapping functions that pass once through every point of an N-dimensional space.

The mapping functions are executed in constant time, w.r.t. the number of features.

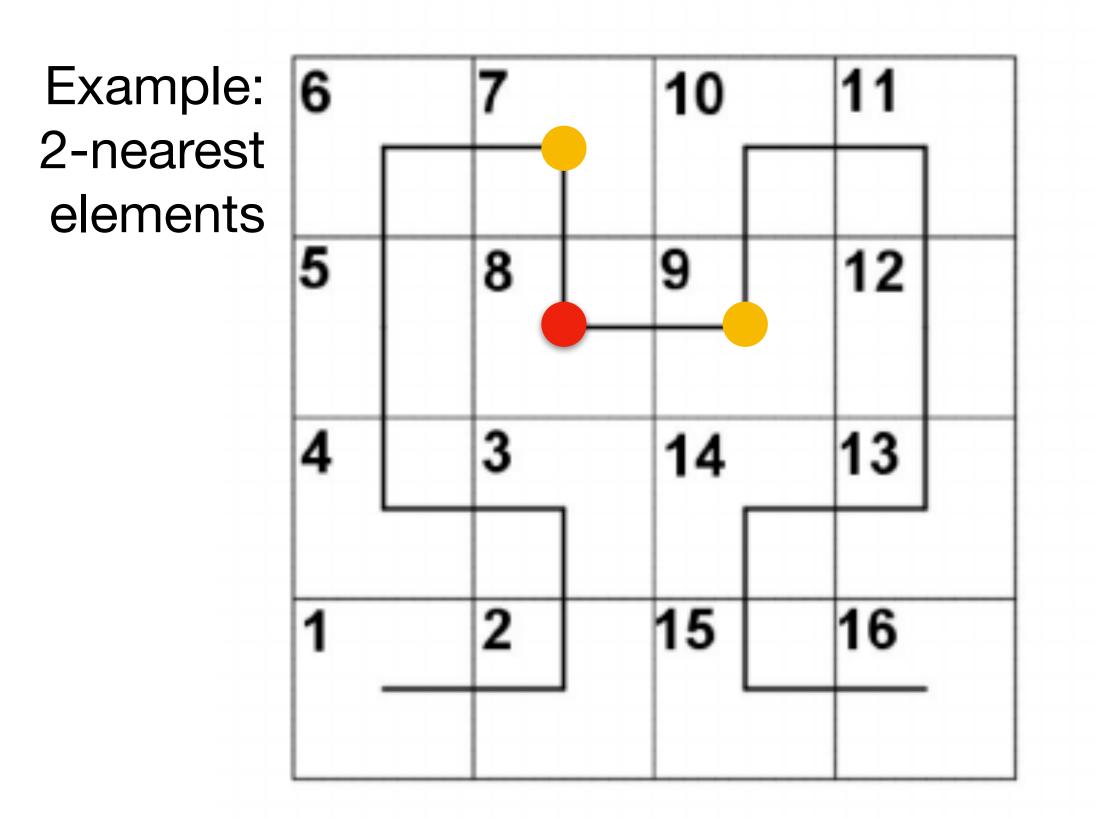
3D space examples

Hilbert curves

How to reduce complexity?

The curves are 1D and the elements indexed by them are "sorted" in an *approximation* of their distances in the original space.

If the curve is used as a binary tree, an approximation of the k-nearest elements can be obtained in *O(log(n))*, where *n* is the number of features.

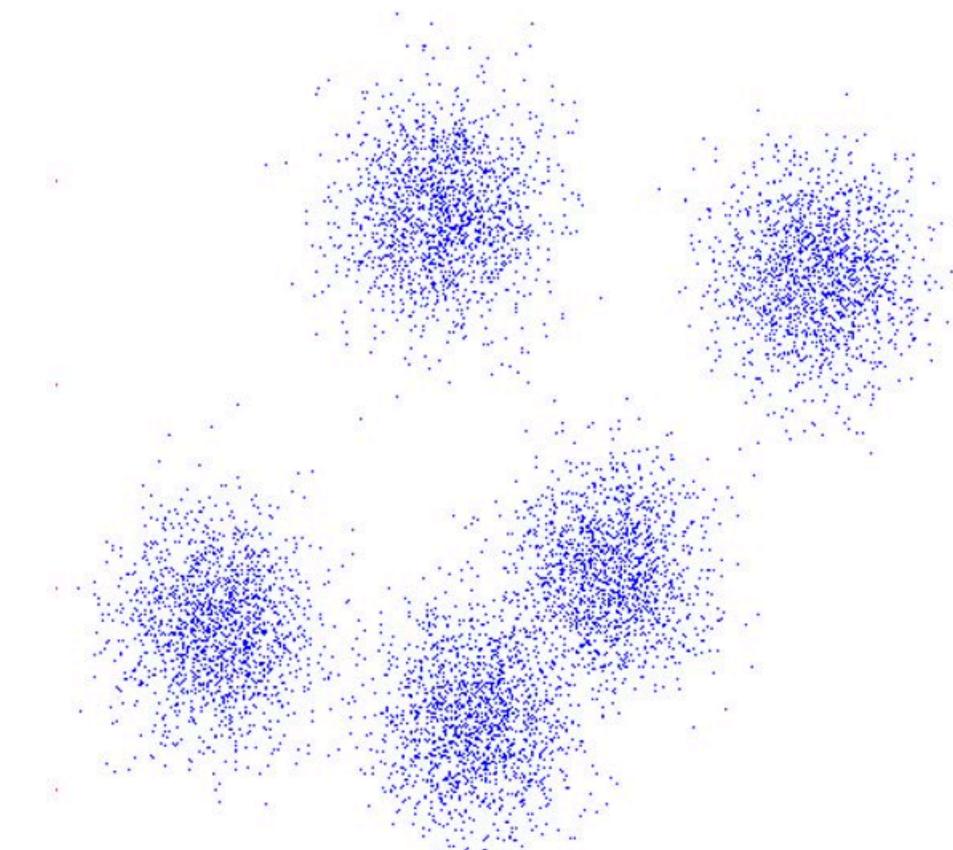


How to reduce complexity?

Cluster the features and limit the k-nearest search to one or a couple of clusters.

There will be less elements to consider

> Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf

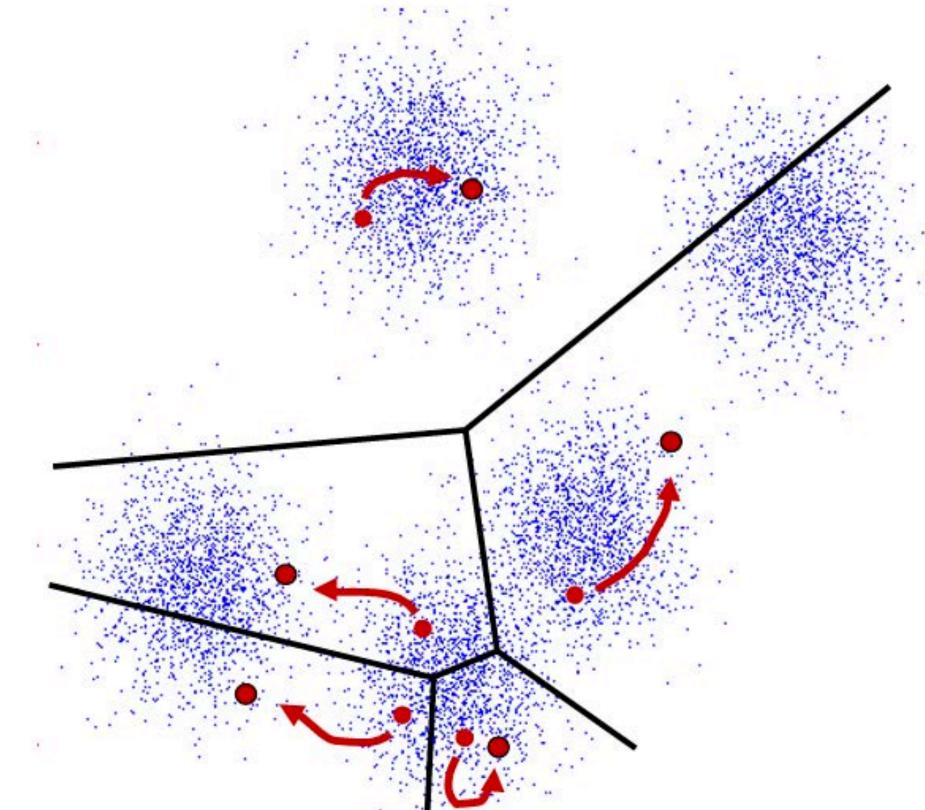


How to reduce complexity?

Cluster the features and limit the k-nearest search to one or a couple of clusters.

There will be less elements to consider

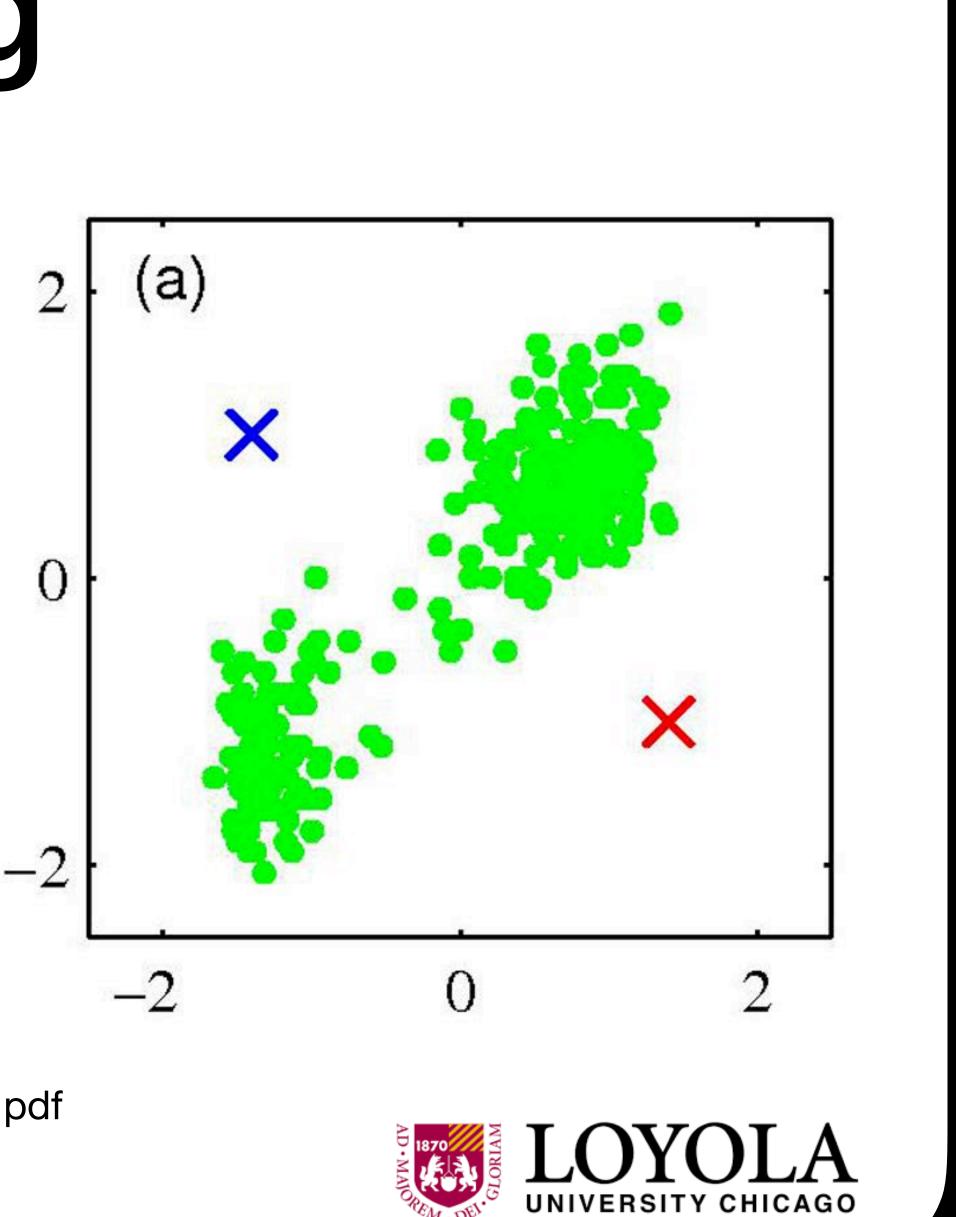
> Source: https://people.csail.mit.edu/ dsontag/courses/ml12/slides/lecture14.pdf



.

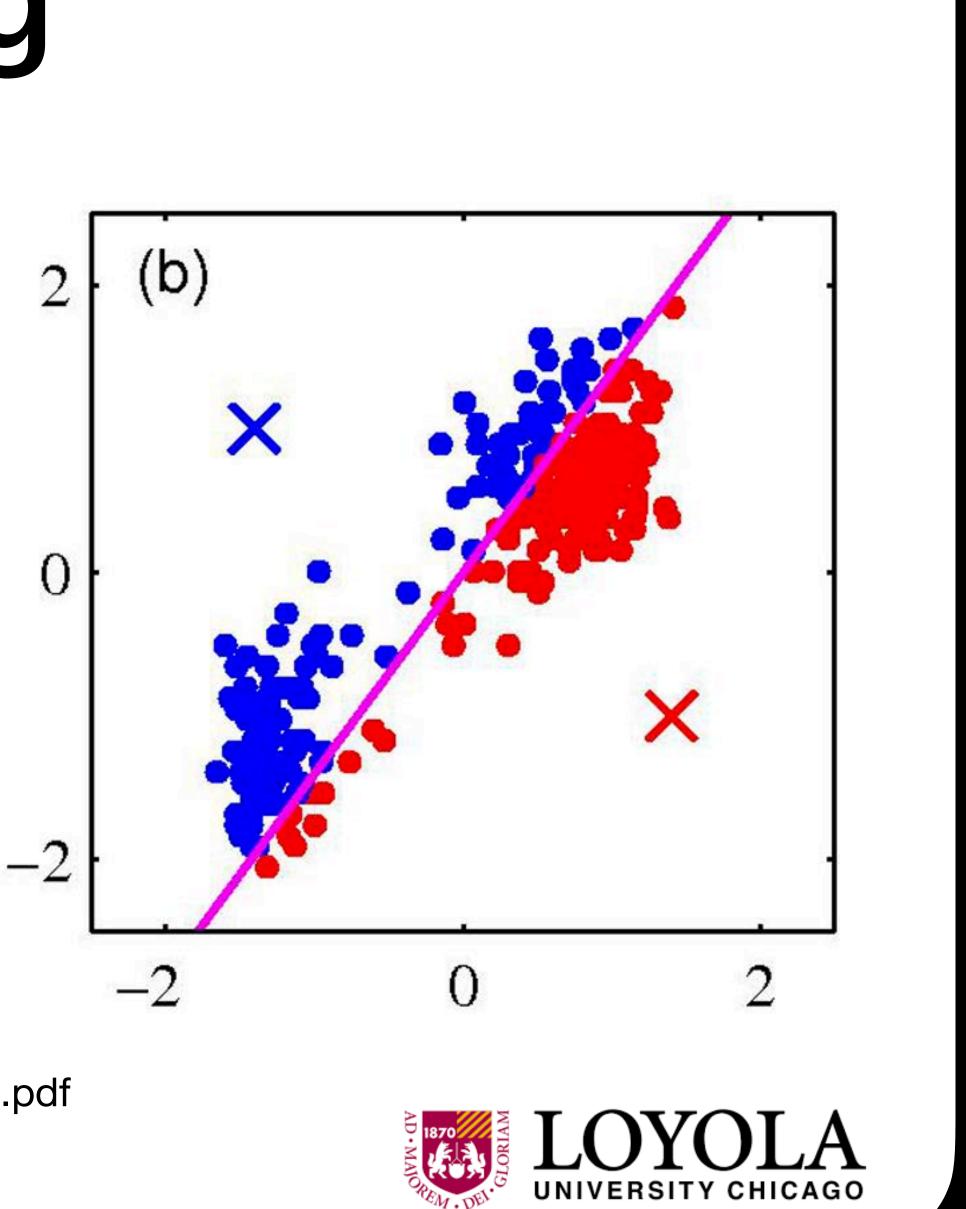
K-Means

Select K random features as cluster centers.



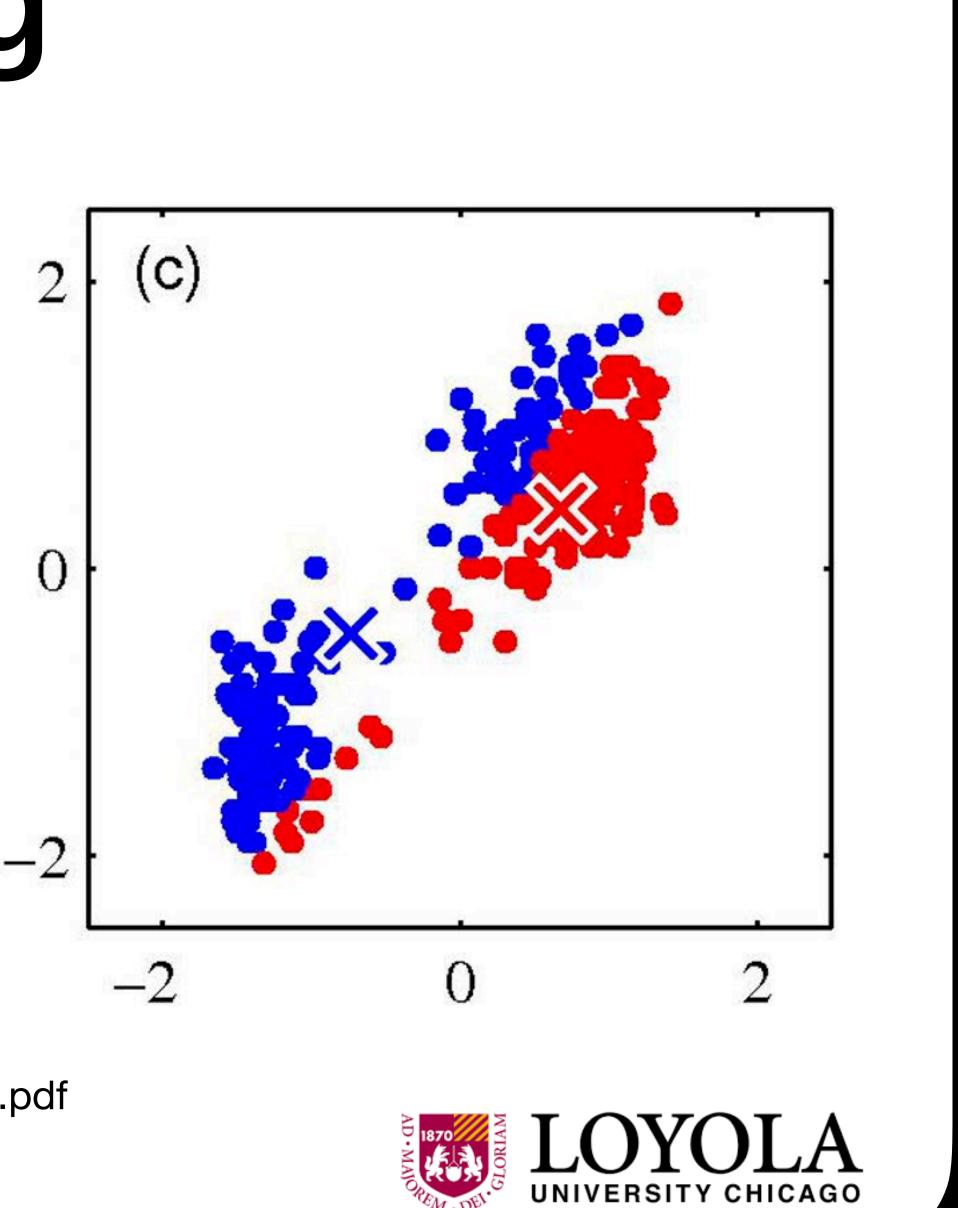
K-Means

Assign features to closes cluster centers.



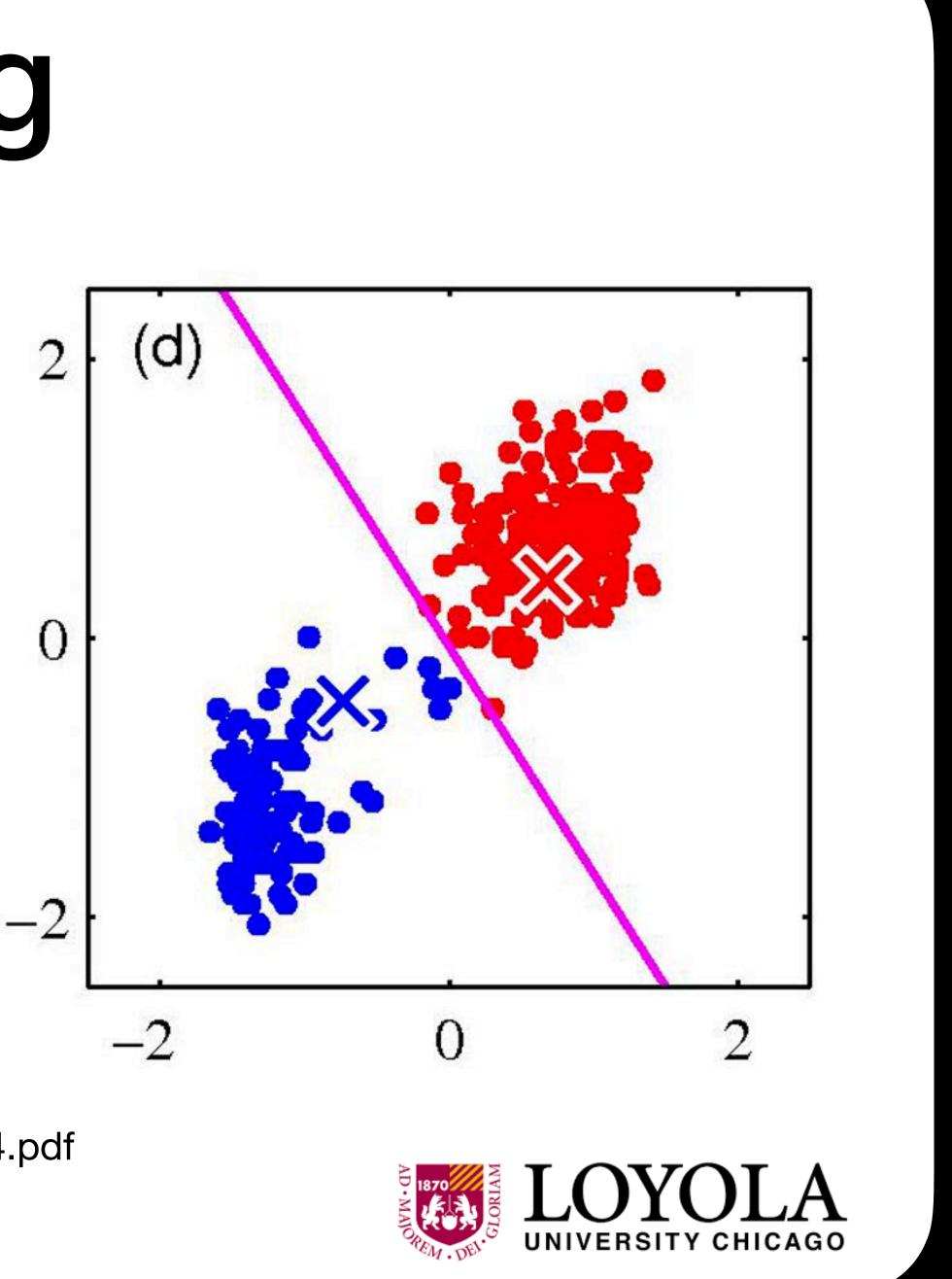
K-Means

Update the cluster centers by taking the means of each cluster.



K-Means

Repeat until convergence.



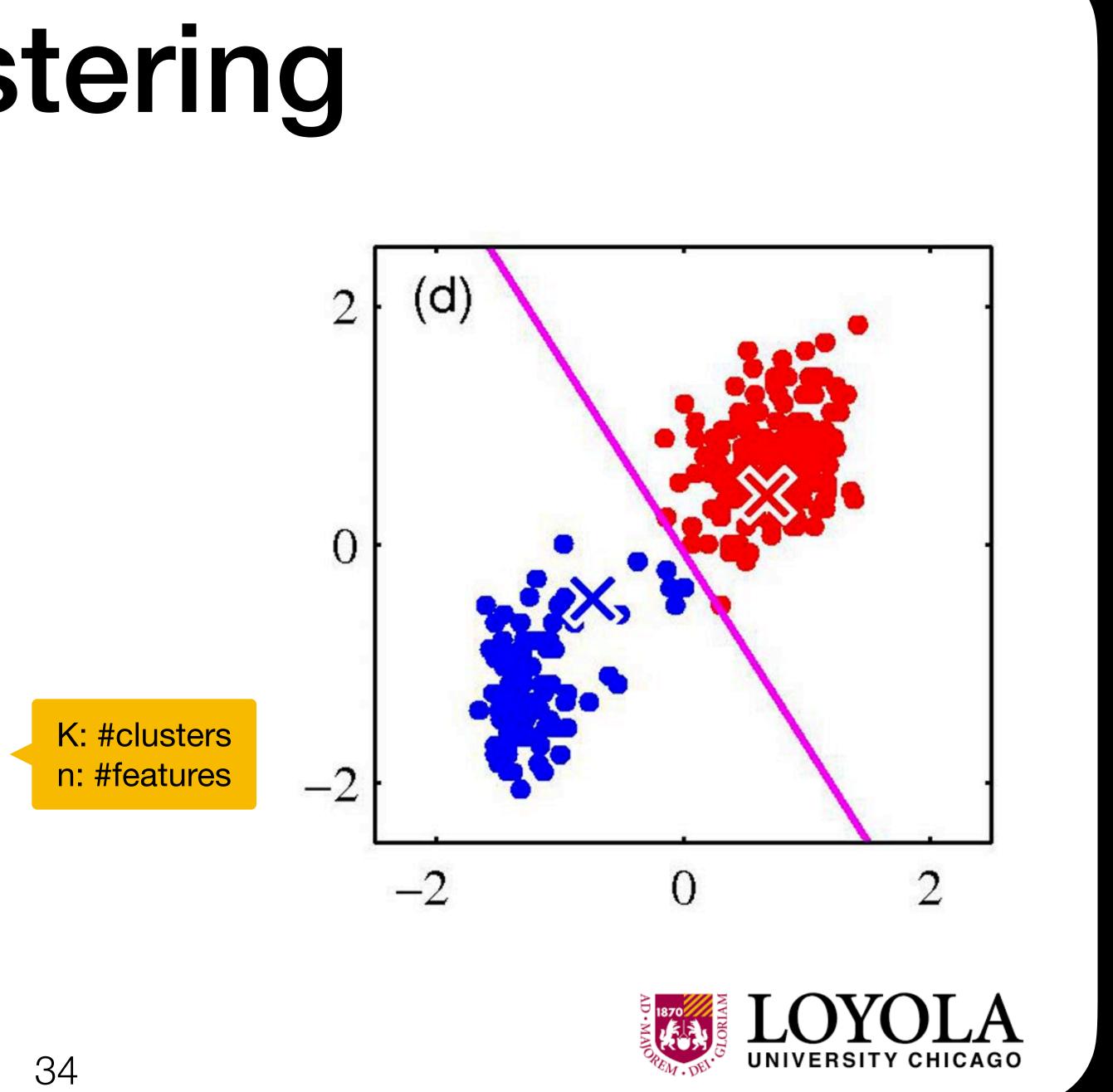
K-Means

What are the limitations of this approach?

What is the ideal number of clusters?

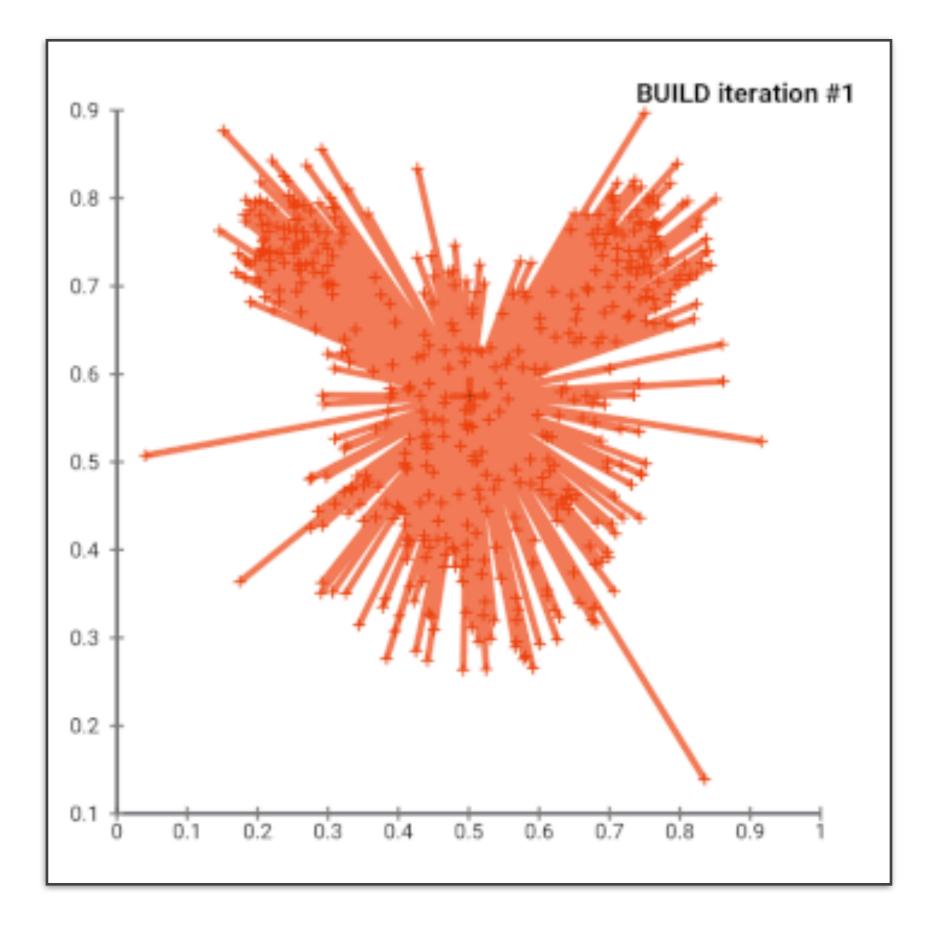
Complexity of building clusters: O(Kn) in each step until convergence.

Clustering is *offline*: i.e., it does not happen at feature querying time.



Variation: K-medoids

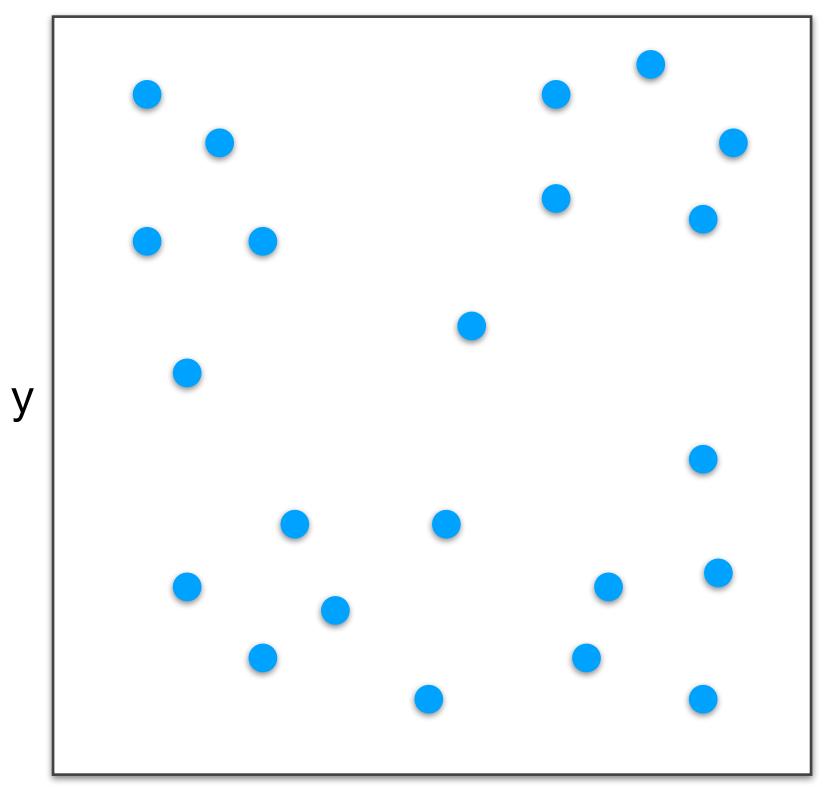
Instead of using means as the cluster centers, use *medians*, which are actual existing features.



How to reduce complexity?

K-dimensional trees: For K times Split one feature dimension into two halves.

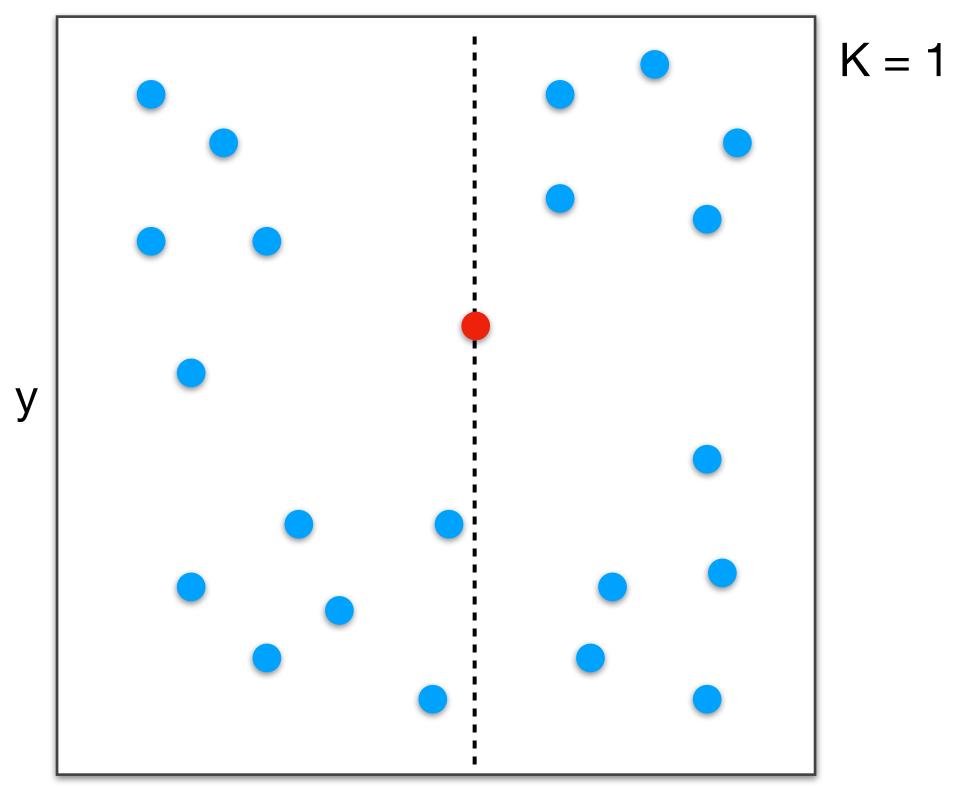
2D-features toy case



Х

K-dimensional trees: For K times Split one feature dimension into two partitions using medians.

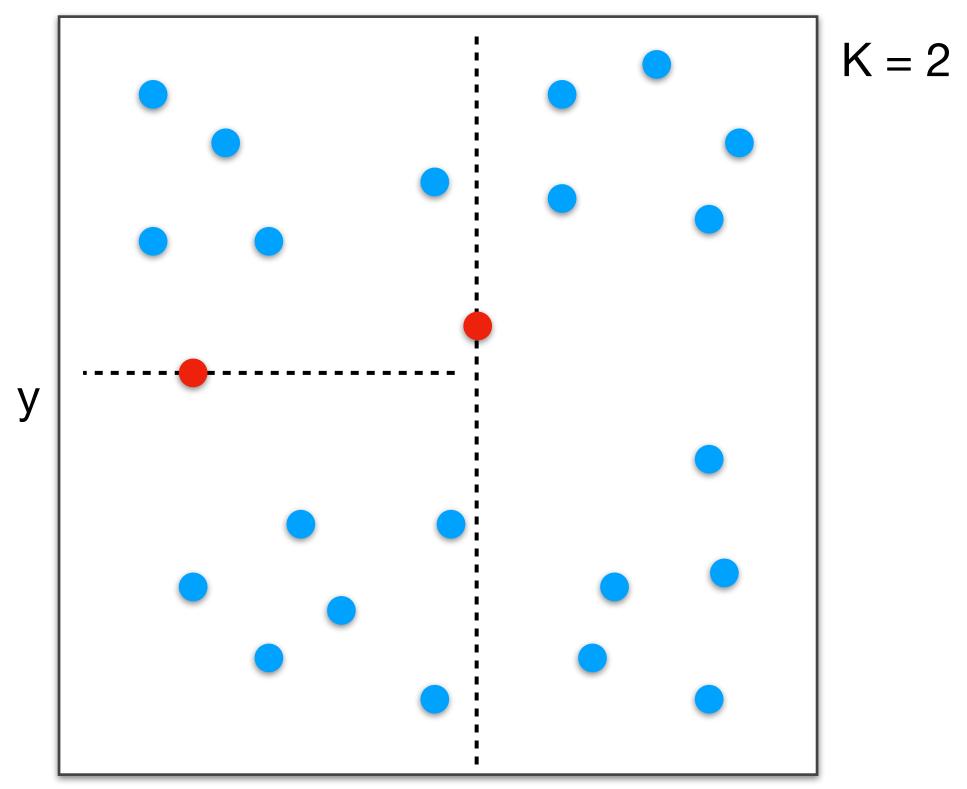
2D-features toy case



Χ

K-dimensional trees: For K times Split one feature dimension into two partitions using medians.

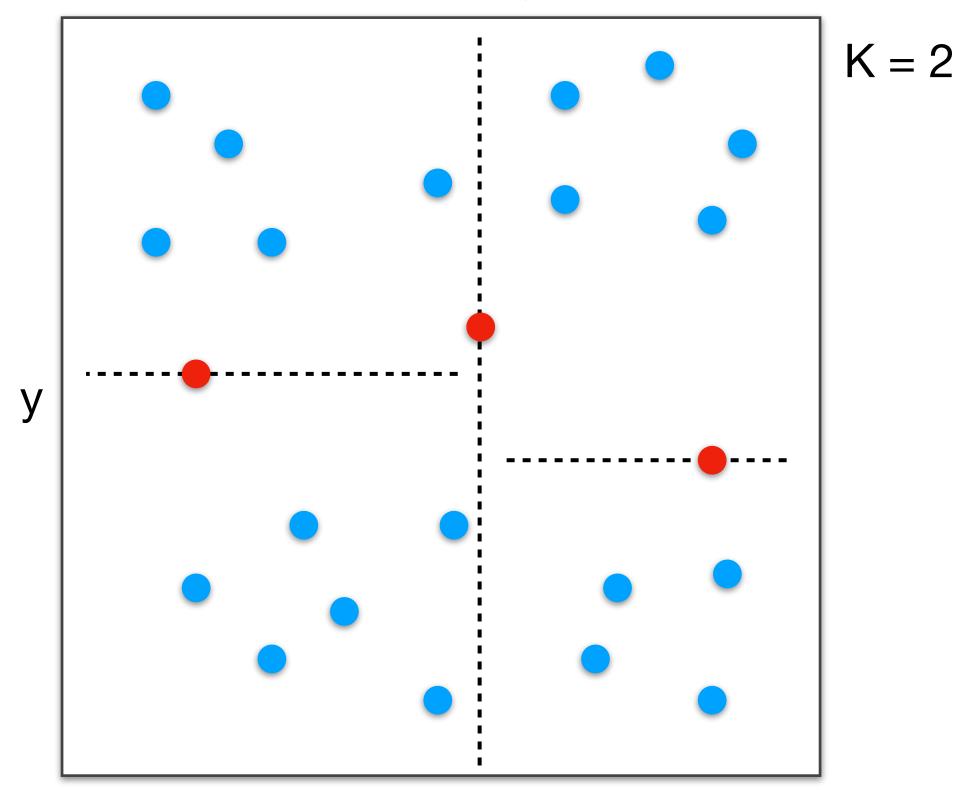
2D-features toy case



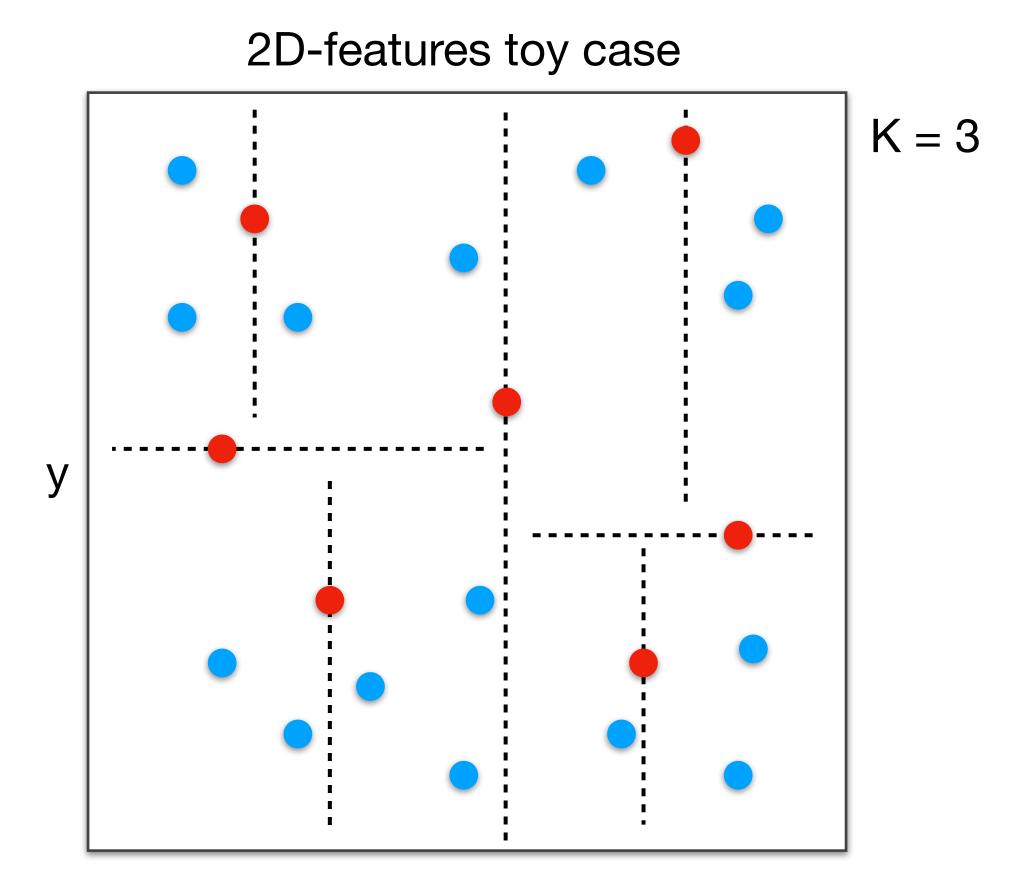
Χ

K-dimensional trees: For K times Split one feature dimension into two partitions using medians.

2D-features toy case



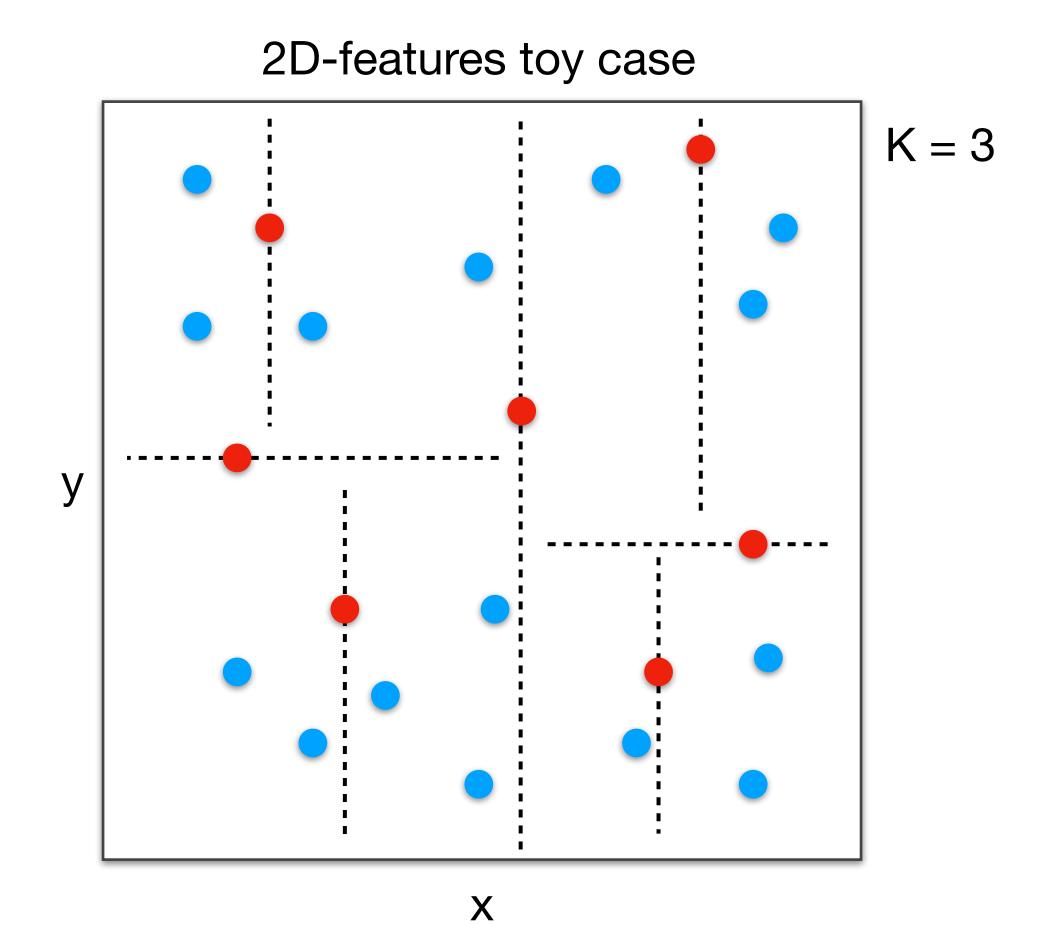
K-dimensional trees: For K times Split one feature dimension into two partitions using medians.



K-dimensional trees: For K times Split one feature dimension into two partitions using medians.

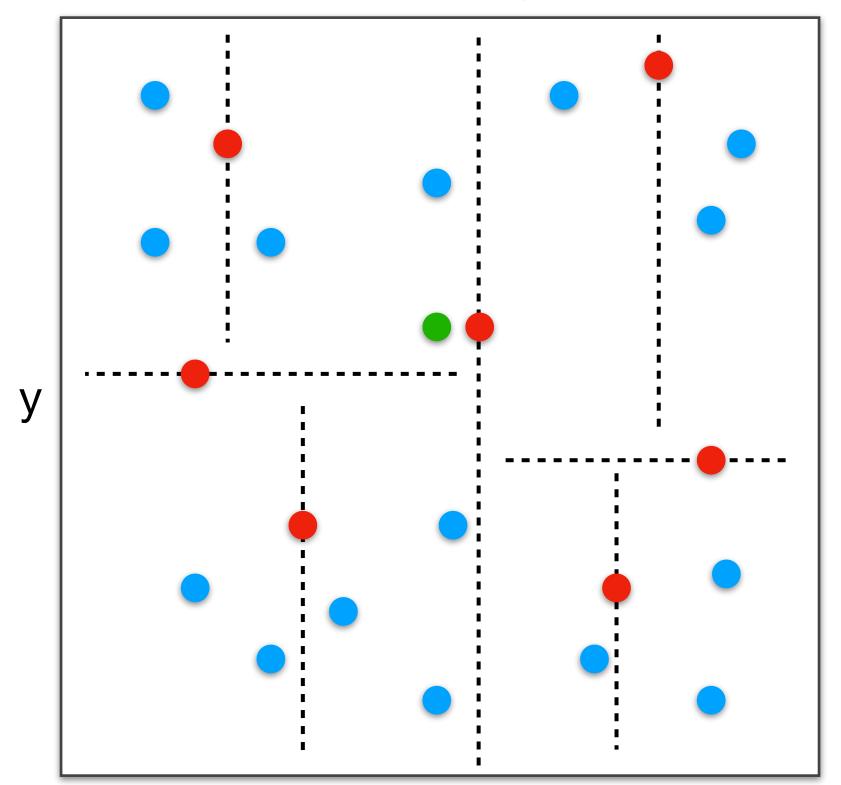
Complexity to build: O(n log(n))

Building is *offline*: i.e., it does not happen at feature querying time.

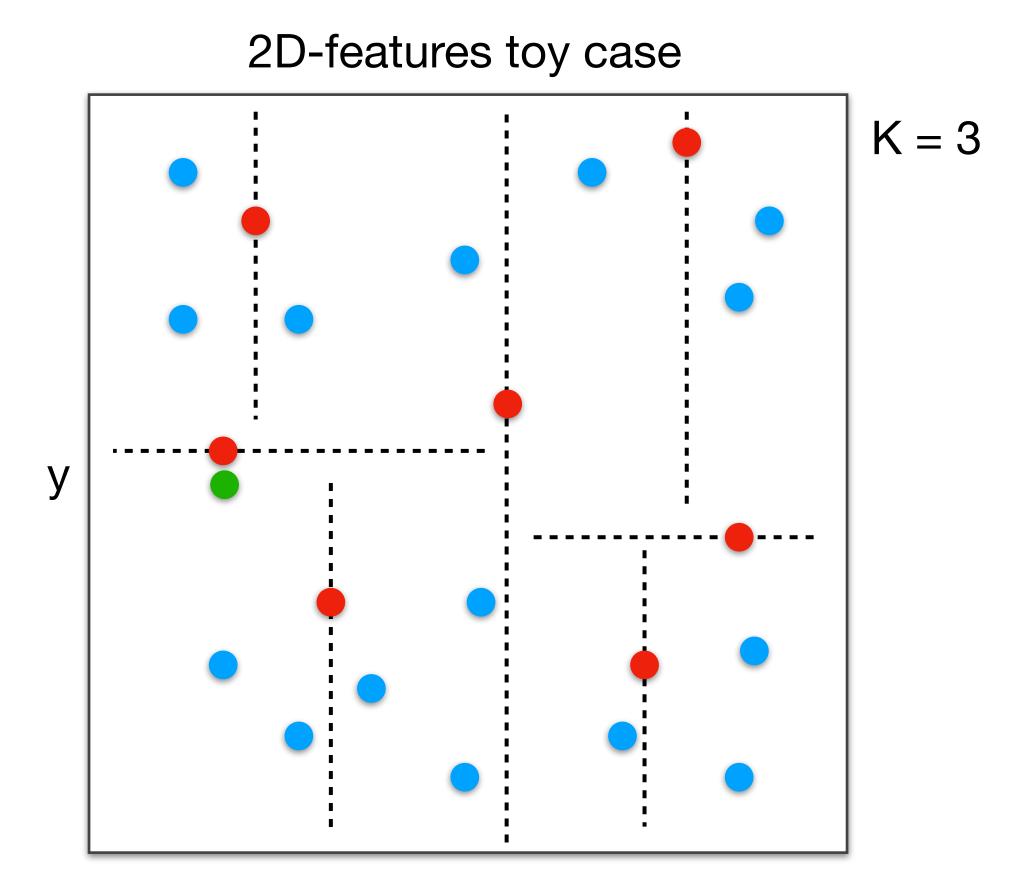


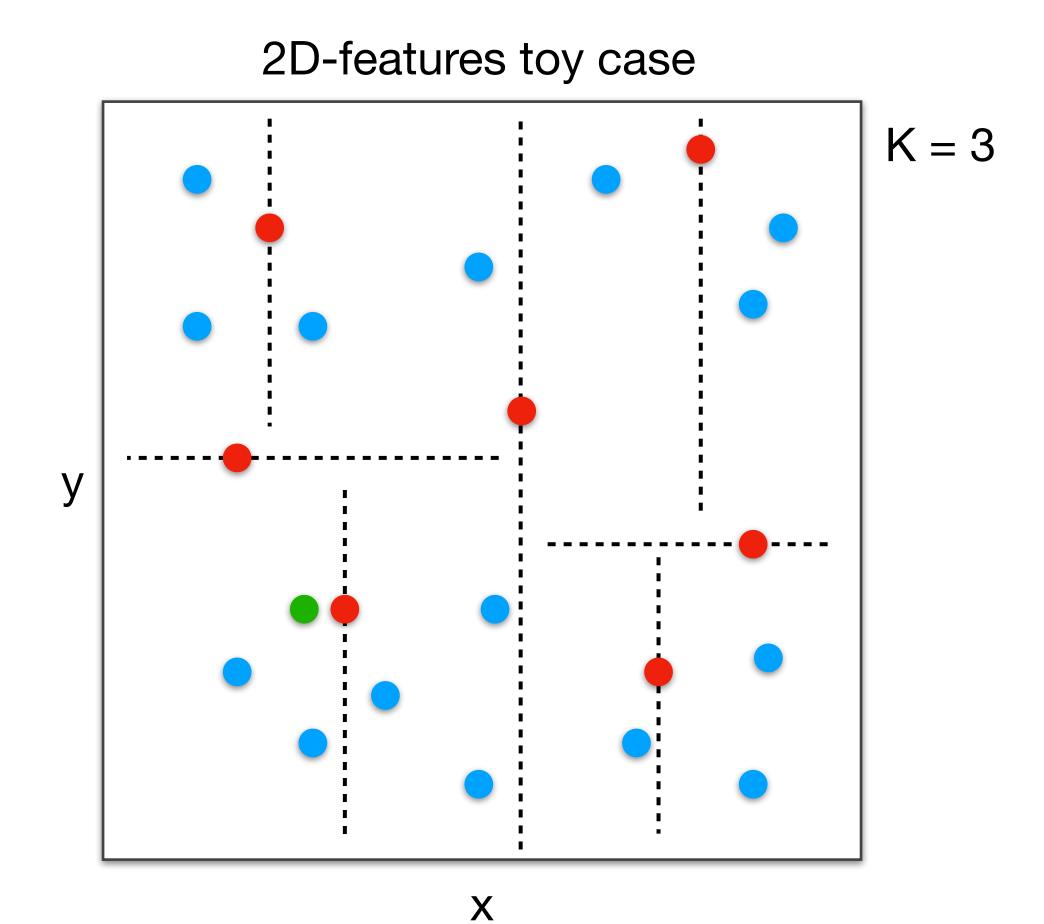
How to obtain 3-nearest neighbors?

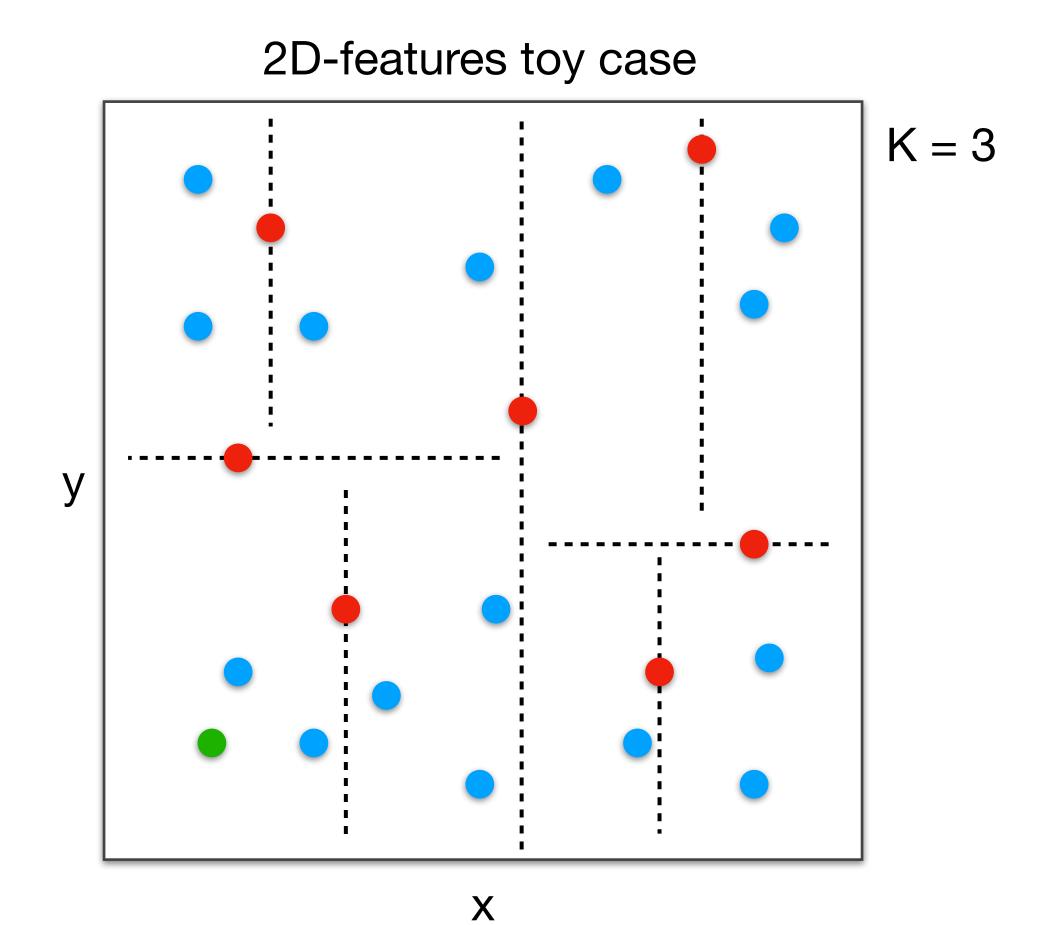
2D-features toy case

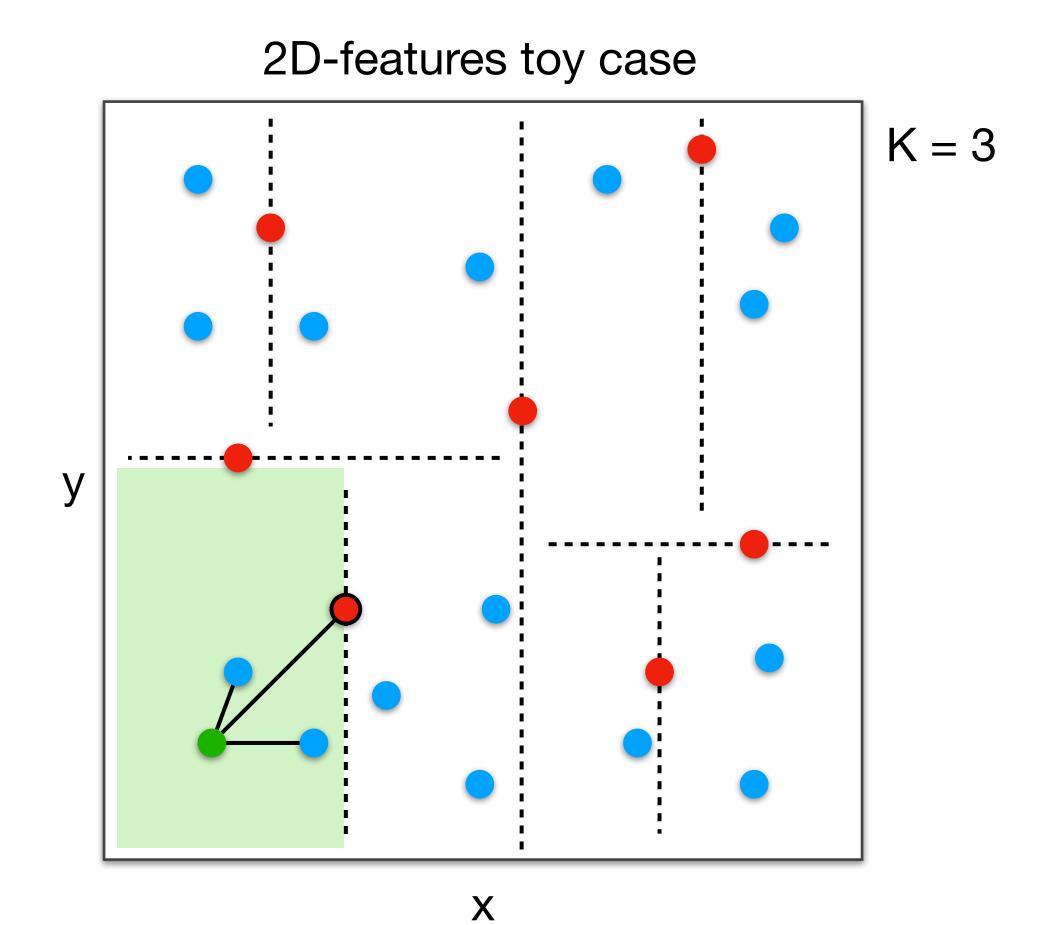


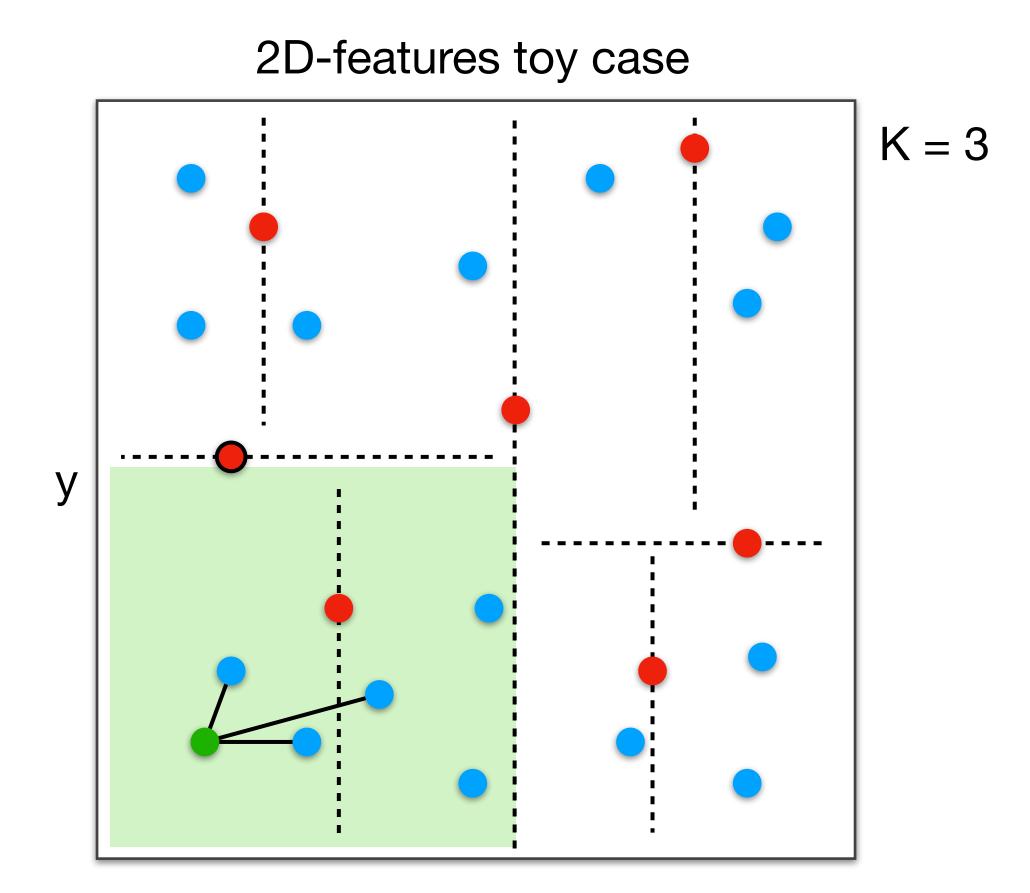
Χ







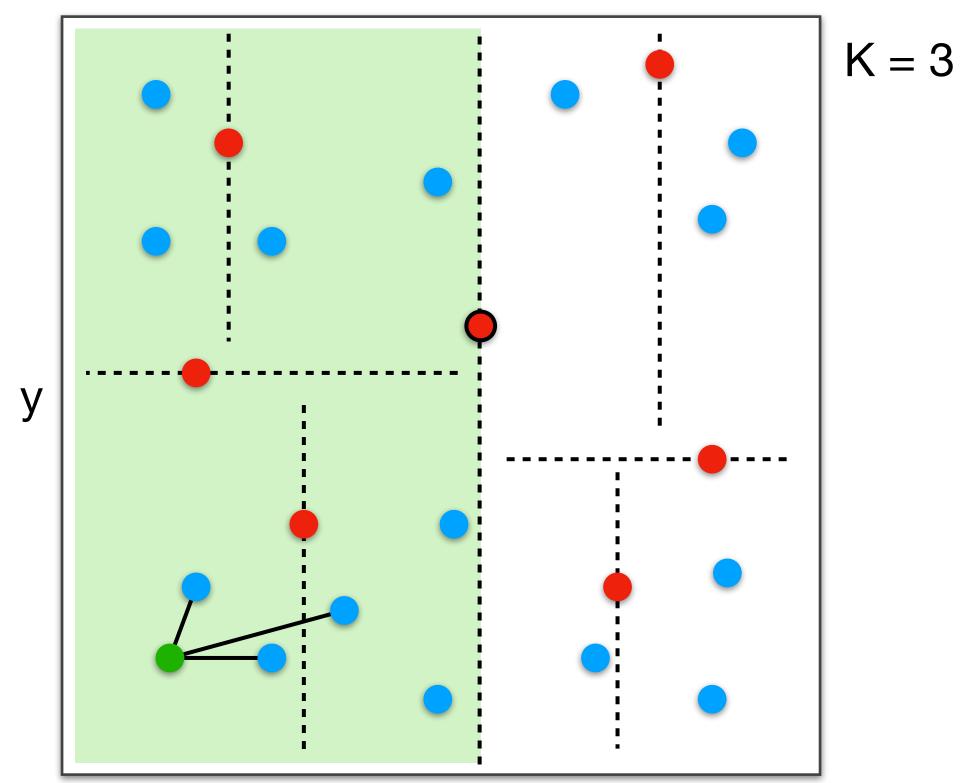




How to obtain 3-nearest neighbors?

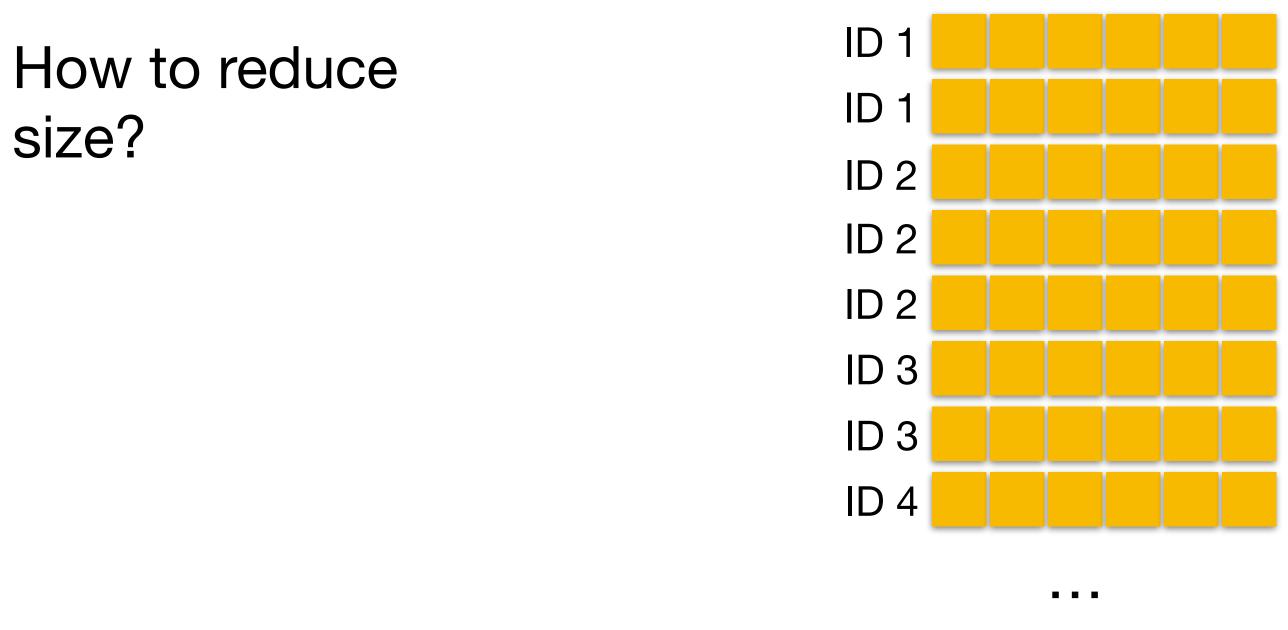
No changes in 3-nearest, so stop.

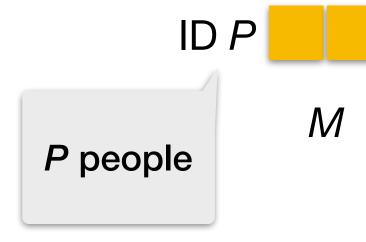
2D-features toy case



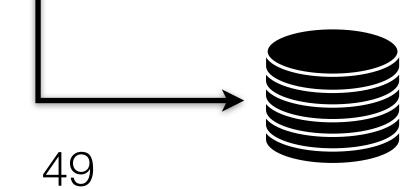
Х

Toy Case (6D features, reality: 512D for faces)



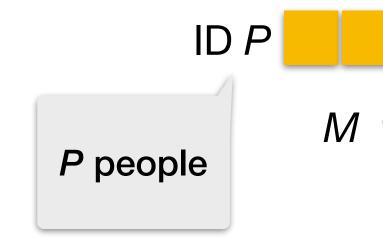


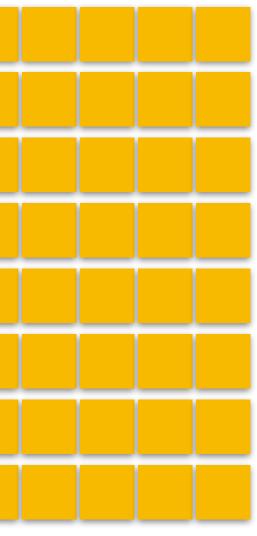
M features



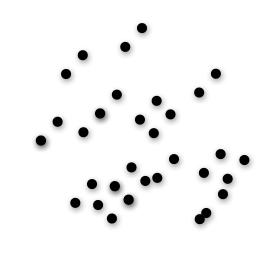
Toy Case (6D features, reality: 512D for faces)

How to reduce size?	ID 1
State-of-the-art feature	ID 2 ID 2 ID 2 ID 2
indexing.	ID 3
 Start with a coarse quantizer. 	ID 4

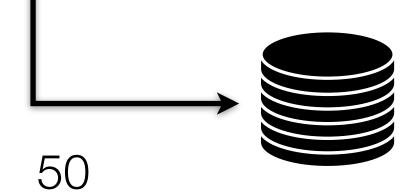




coarse quantizer

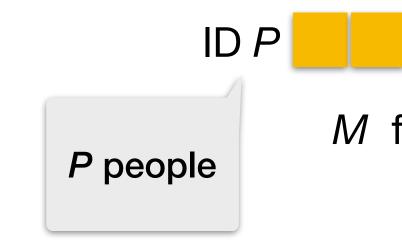


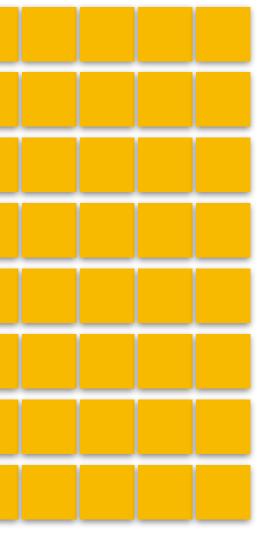
M features



Toy Case (6D features, reality: 512D for faces)

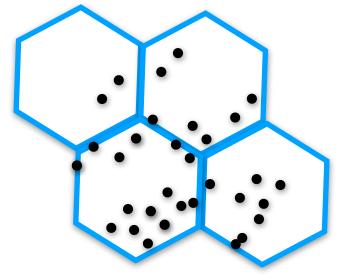
How to reduce size?	ID 1
State-of-the-art feature	ID 2 ID 2 ID 2 ID 2
indexing.	ID 3
 Start with a coarse quantizer. 	ID 4

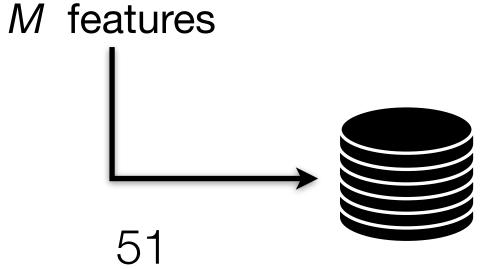




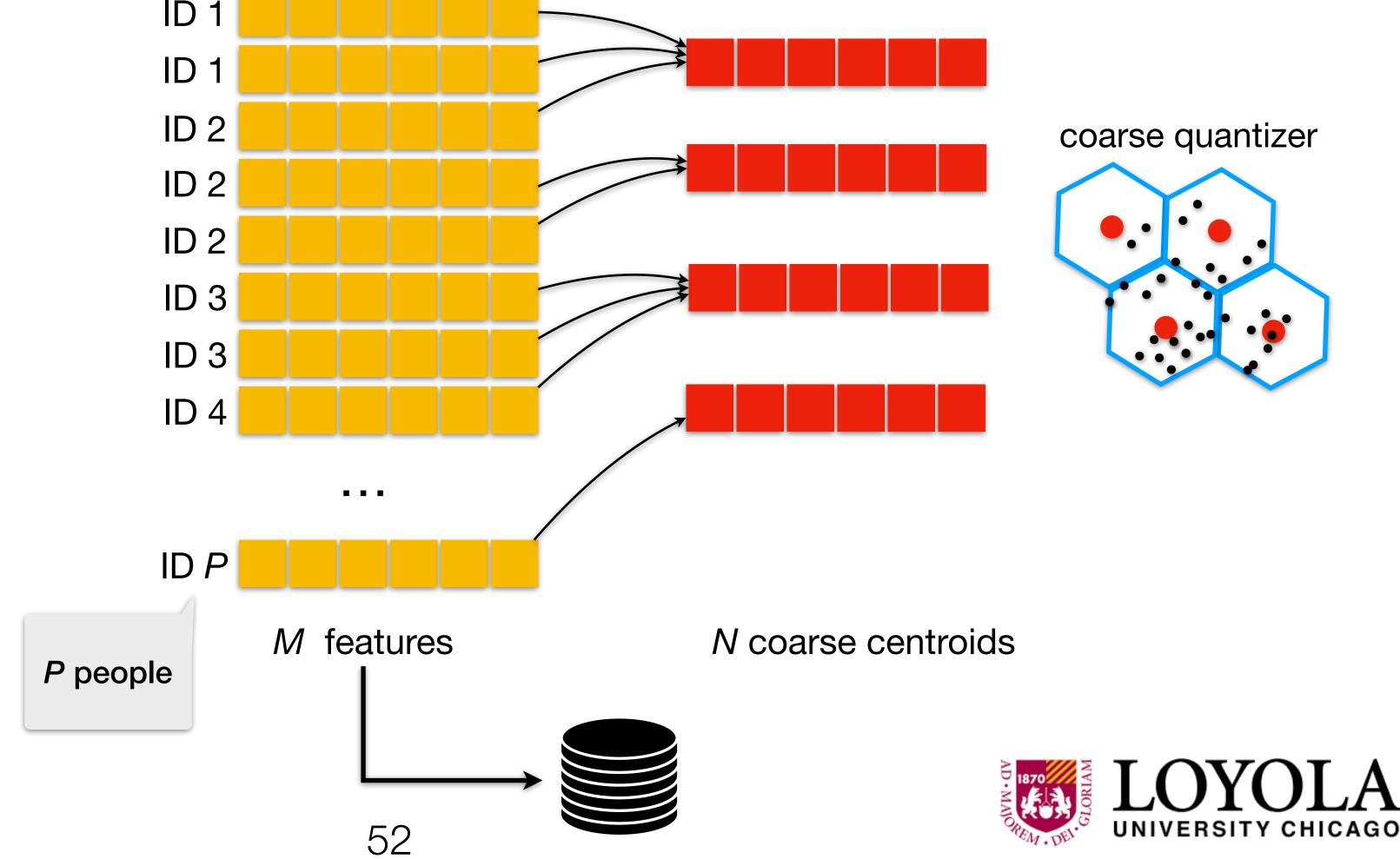
. . .

coarse quantizer

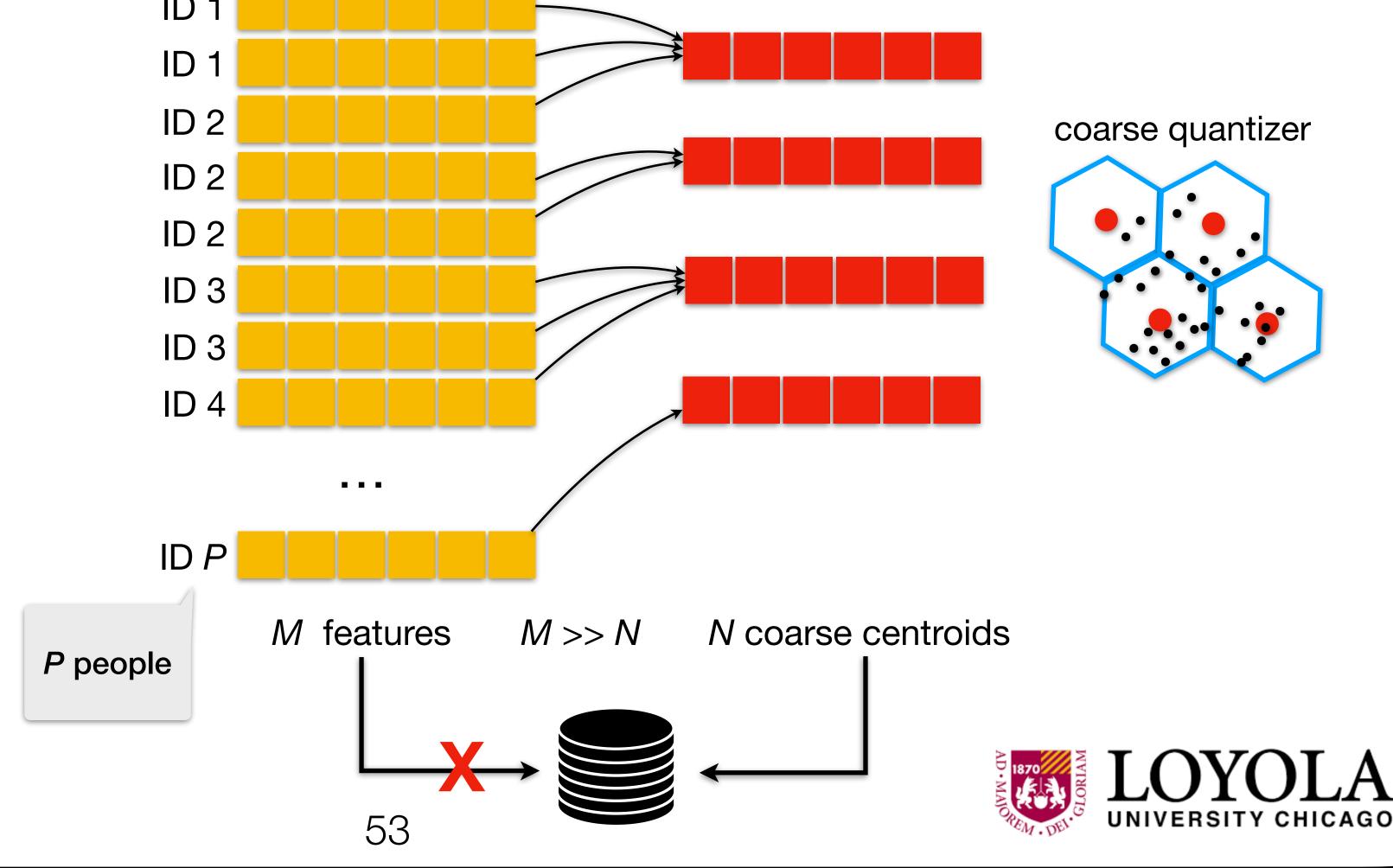




How to reduce size?	ID 1
State-of-the-art feature	ID 2 ID 2 ID 2 ID 2
indexing.	ID 3
 Start with a coarse quantizer. 	ID 4

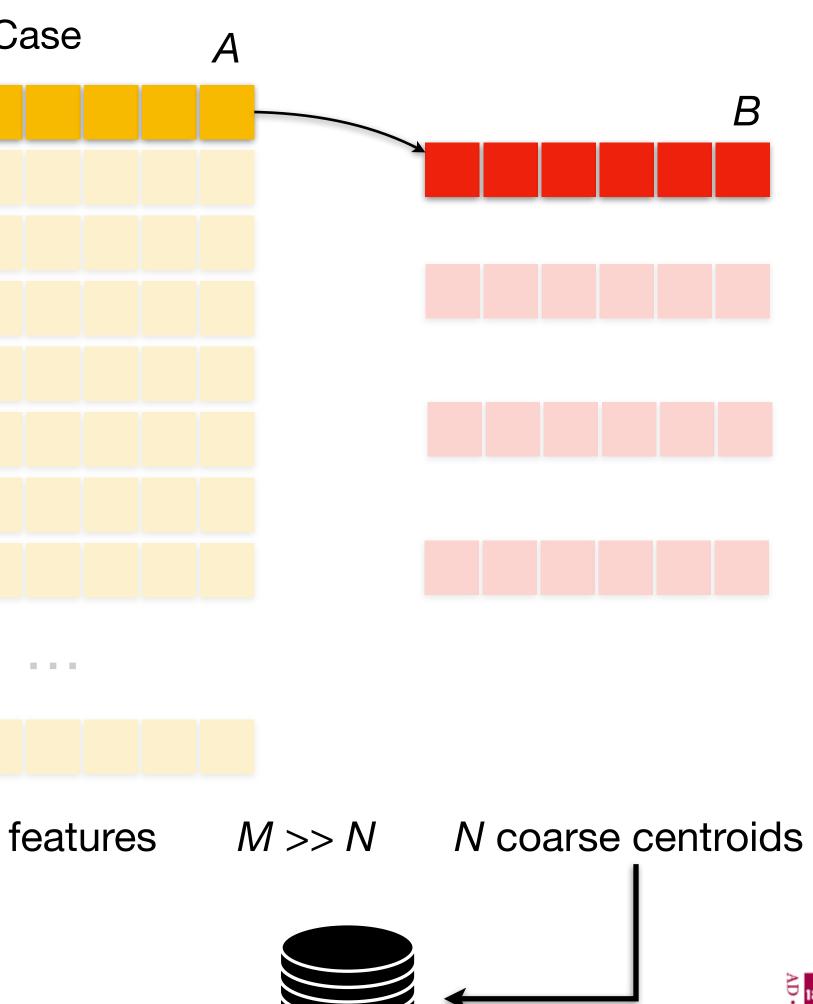


How to reduce size?	ID 1
State-of-the-art feature	ID 2 ID 2 ID 2 ID 2
indexing.	ID 3
 Start with a coarse quantizer. 	ID 4



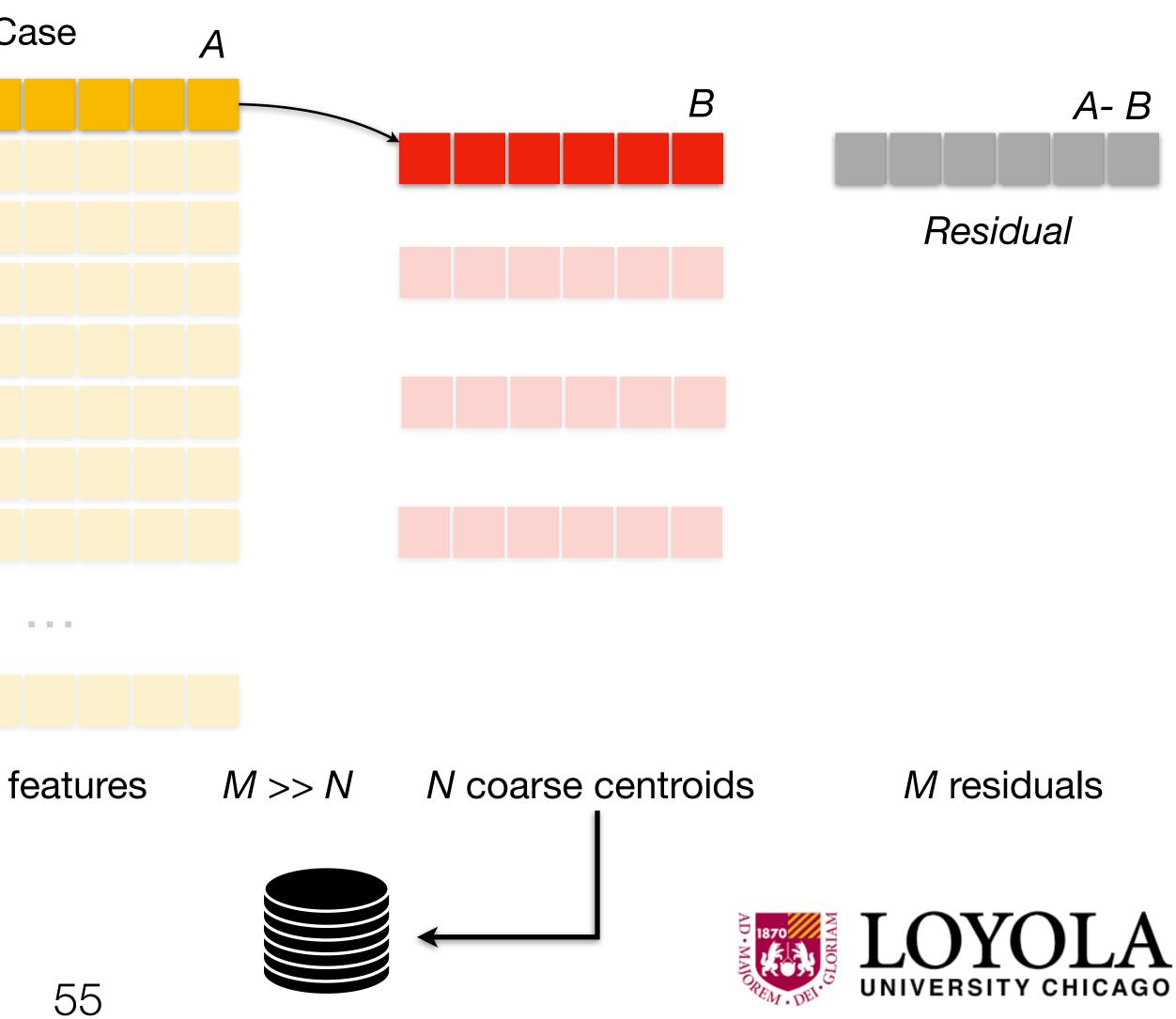
Toy Case

How to reduce size?	ID 1 ID 1 ID 2	
State-of-the-art feature indexing.	ID 2 ID 2 ID 3	
2. Compute residuals (differences) between features and their respective coarse	ID 3 ID 4 ID P	
centroids.		M



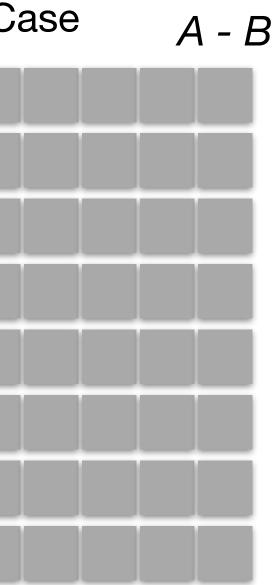
Toy Case

How to reduce size?	ID 1 ID 1 ID 2	
State-of-the-art feature indexing.	ID 2 ID 2 ID 3	
2. Compute residuals (differences) between features and their respective coarse	ID 3 ID 4 ID P	
centroids.		M



Toy Case

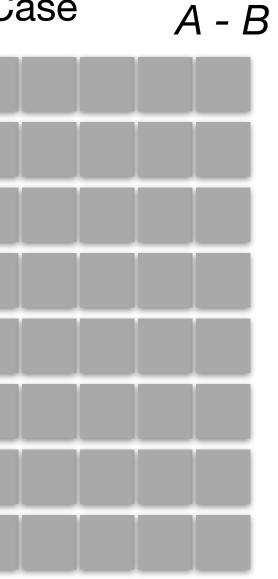
How to reduce size?	ID 1
	ID 1
	ID 2
State-of-the-art feature	ID 2
indexing.	ID 2
	ID 3
	ID 3
3. Reduce the	ID 4
dimensionality of	
residuals with	
Product Quantization.	ID P
	ЛЛ r



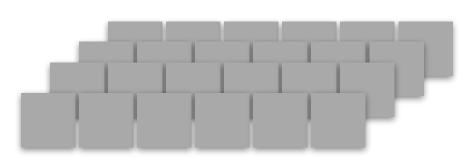
M residuals

Toy Case

How to reduce size?	ID 1
	ID 1
	ID 2
State-of-the-art feature	ID 2
indexing.	ID 2
	ID 3
	ID 3
3. Reduce the	ID 4
dimensionality of	
residuals with	
Product Quantization.	ID P
	ЛЛ r



Product Quantization

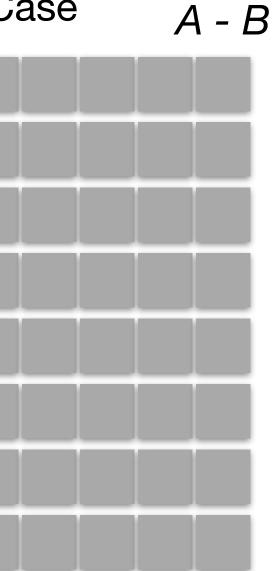


M residuals D dimensions

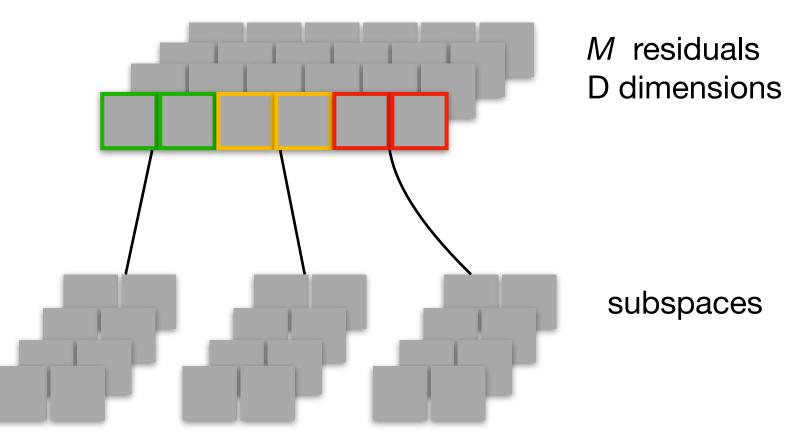
M residuals

Toy Case

How to reduce size?	ID 1
State-of-the-art feature indexing.	ID 2
	ID 2 ID 3
	ID 3
3. Reduce the	ID 4
dimensionality of residuals with Product Quantization .	 ID <i>P</i>
FIUUUUL QUAIILIZALIUII.	M residuals



Product Quantization

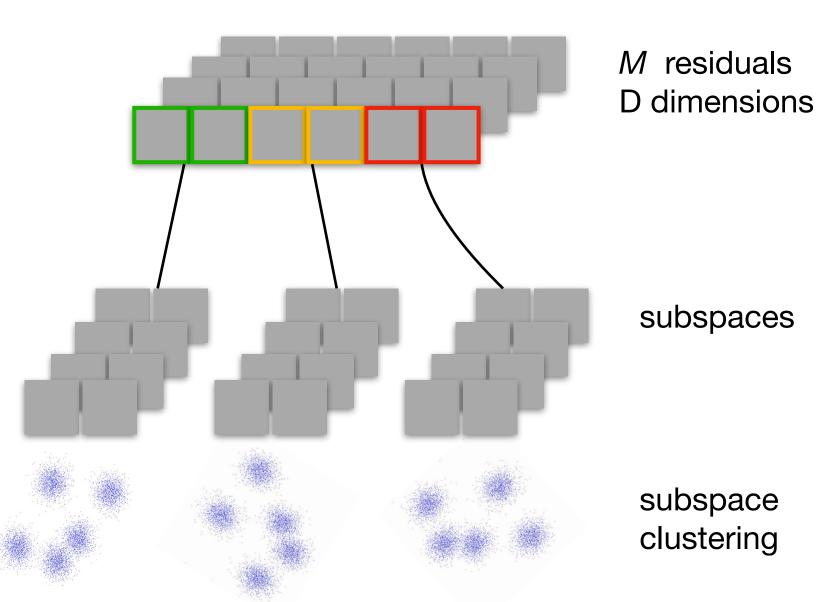


58

Toy Case

How to reduce size?	ID 1
	ID 1
	ID 2
State-of-the-art feature	ID 2
indexing.	ID 2
	ID 3
	ID 3
3. Reduce the	ID 4
dimensionality of	
residuals with	
Product Quantization.	ID P
	ЛЛ r

A - B

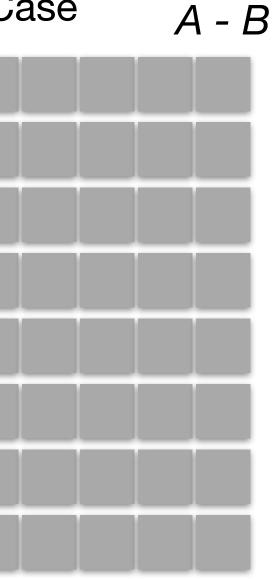


Product Quantization

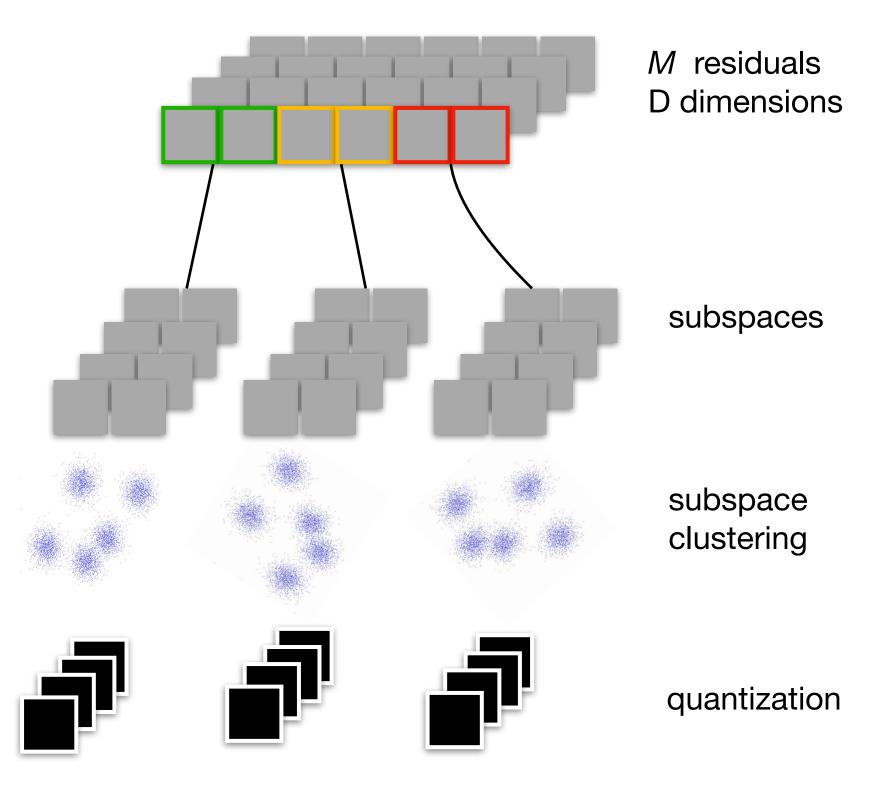
M residuals

Toy Case

How to reduce size?	ID 1 ID 1 ID 2
State-of-the-art feature indexing.	ID 2 ID 2 ID 2
	ID 3
3. Reduce the	ID 3 ID 4
dimensionality of residuals with Product Quantization .	ID P
	M residuals



Product Quantization

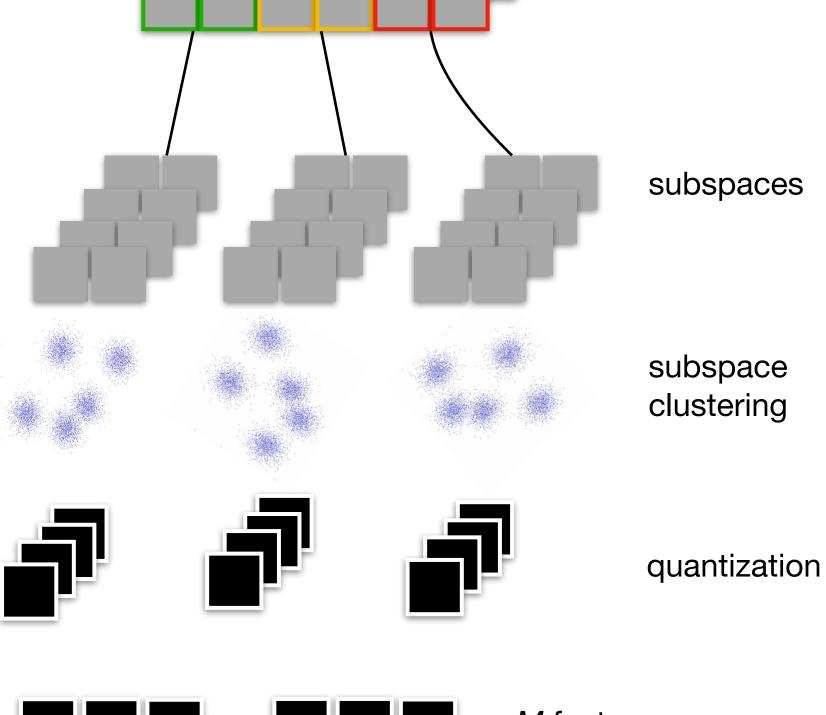


60

Toy Case

How to reduce size?	ID 1 ID 1 ID 2
State-of-the-art feature indexing.	ID 2
	ID 3
3. Reduce the	ID 3 ID 4
dimensionality of	
residuals with Product Quantization .	
	M residuals

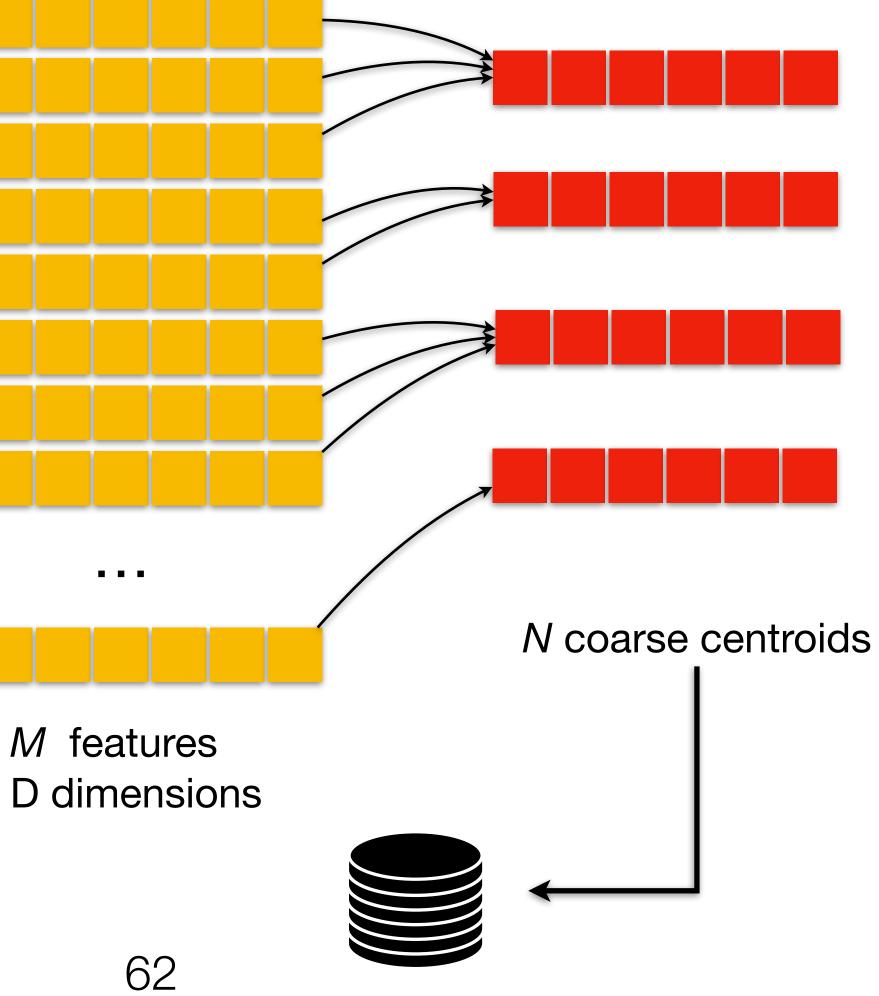
A - B



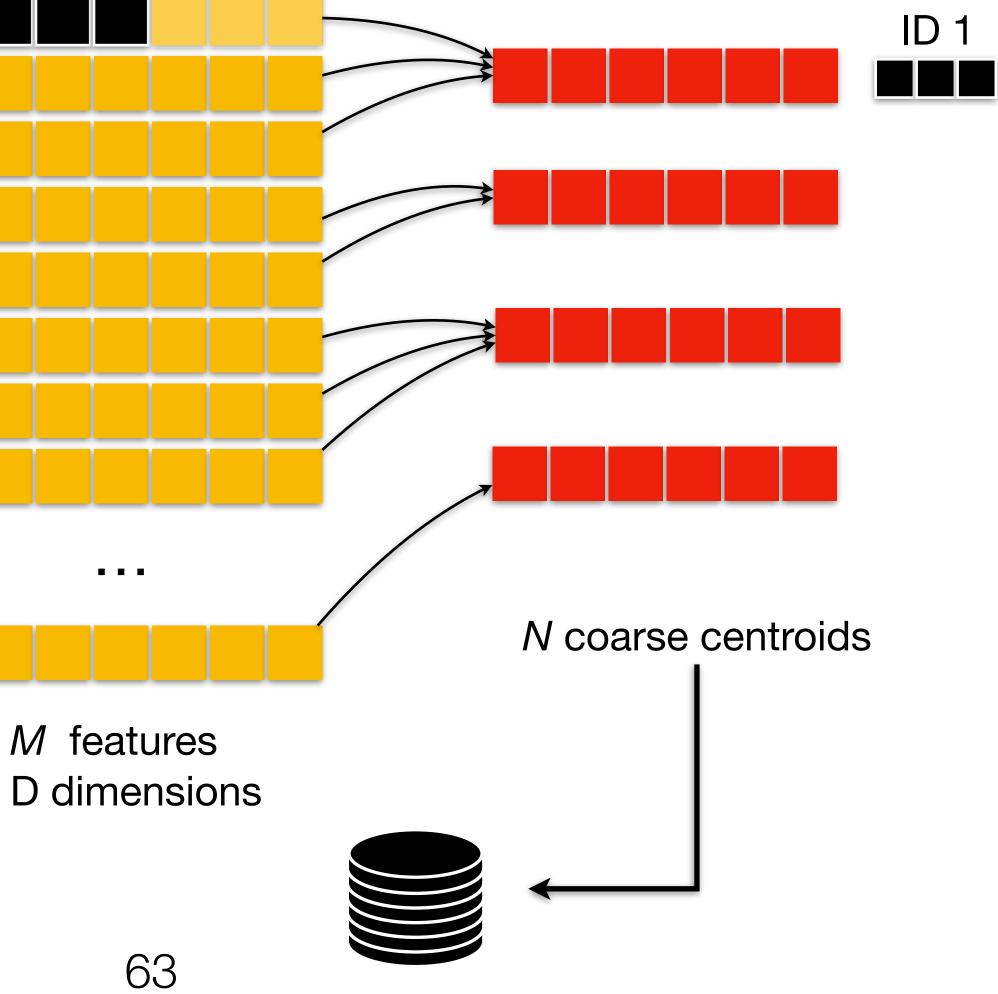
Product Quantization

M features *F* dimensions

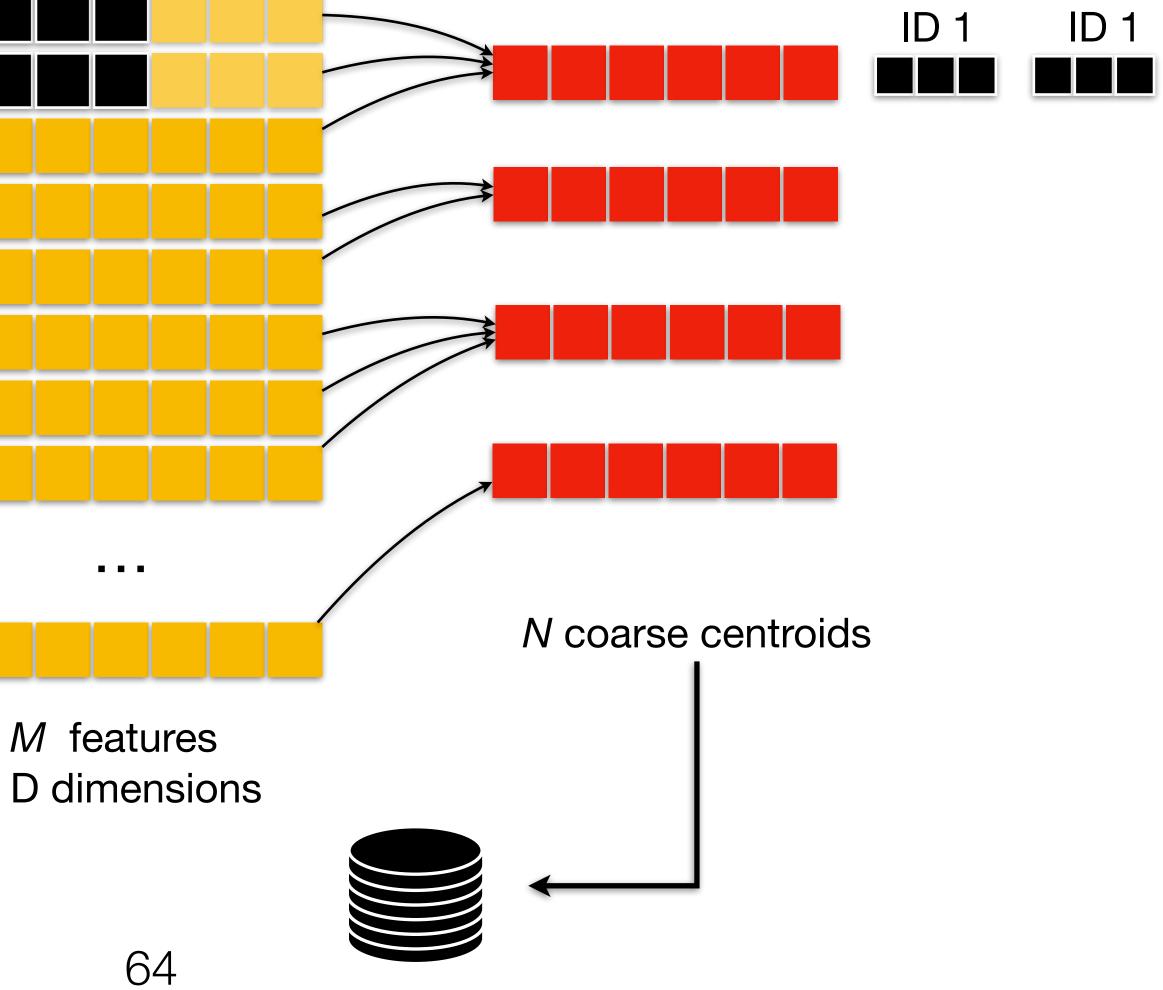
How to reduce	ID 1	
size?	ID 1	
312C :	ID 2	
State-of-the-art feature	ID 2	
	ID 2	
indexing.	ID 3	
	ID 3	
1 Annond the preduct	ID 4	
 Append the product quantized residuals to 		
an inverted file index.	ID P	



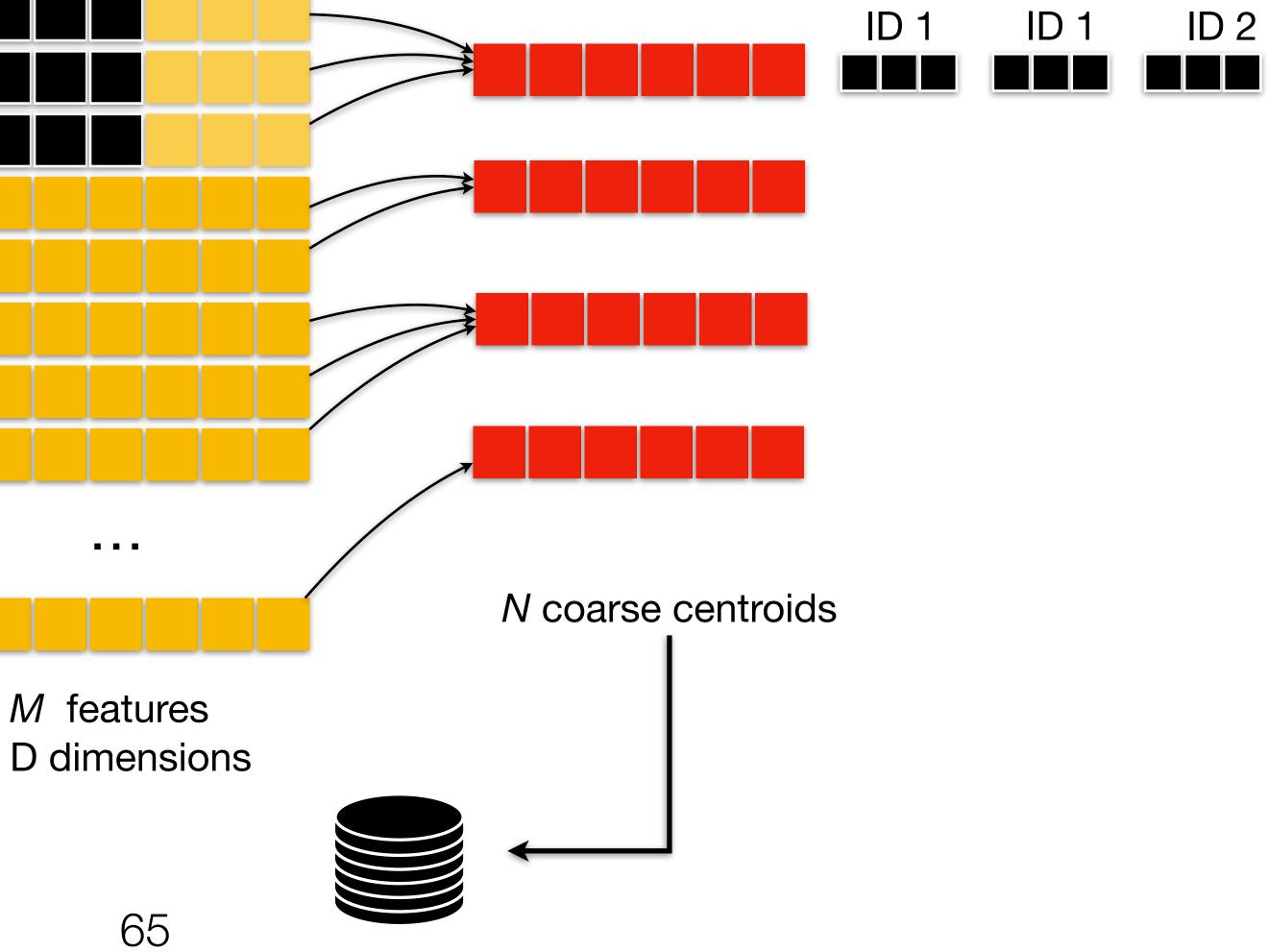
How to reduce size?	ID 1 ID 1	
SIZE :	ID 2	
State-of-the-art feature	ID 2	
	ID 2	
indexing.	ID 3	
	ID 3	
1 Annond the product	ID 4	
4. Append the product quantized residuals to		
an inverted file index .	ID P	



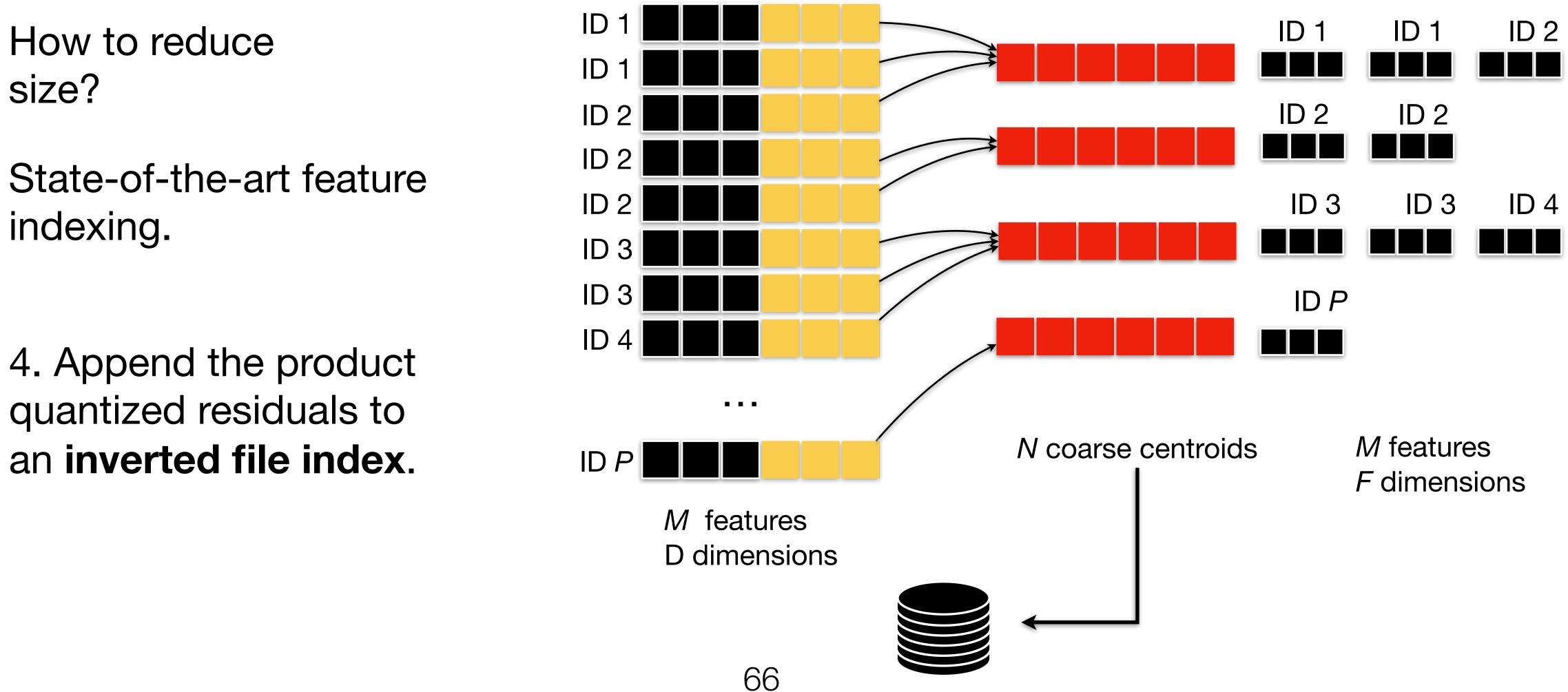
How to reduce size?	ID 1 ID 1	
SIZE :	ID 2	
State-of-the-art feature	ID 2	
	ID 2	
indexing.	ID 3	
	ID 3	
1 Annord the product	ID 4	
 Append the product quantized residuals to 		
an inverted file index.	ID P	



How to reduce size?	ID 1	
	ID 2	
State-of-the-art feature	ID 2	
	ID 2	
indexing.	ID 3	
	ID 3	
1 Append the product	ID 4	
 Append the product quantized residuals to 		
an inverted file index.	ID P	

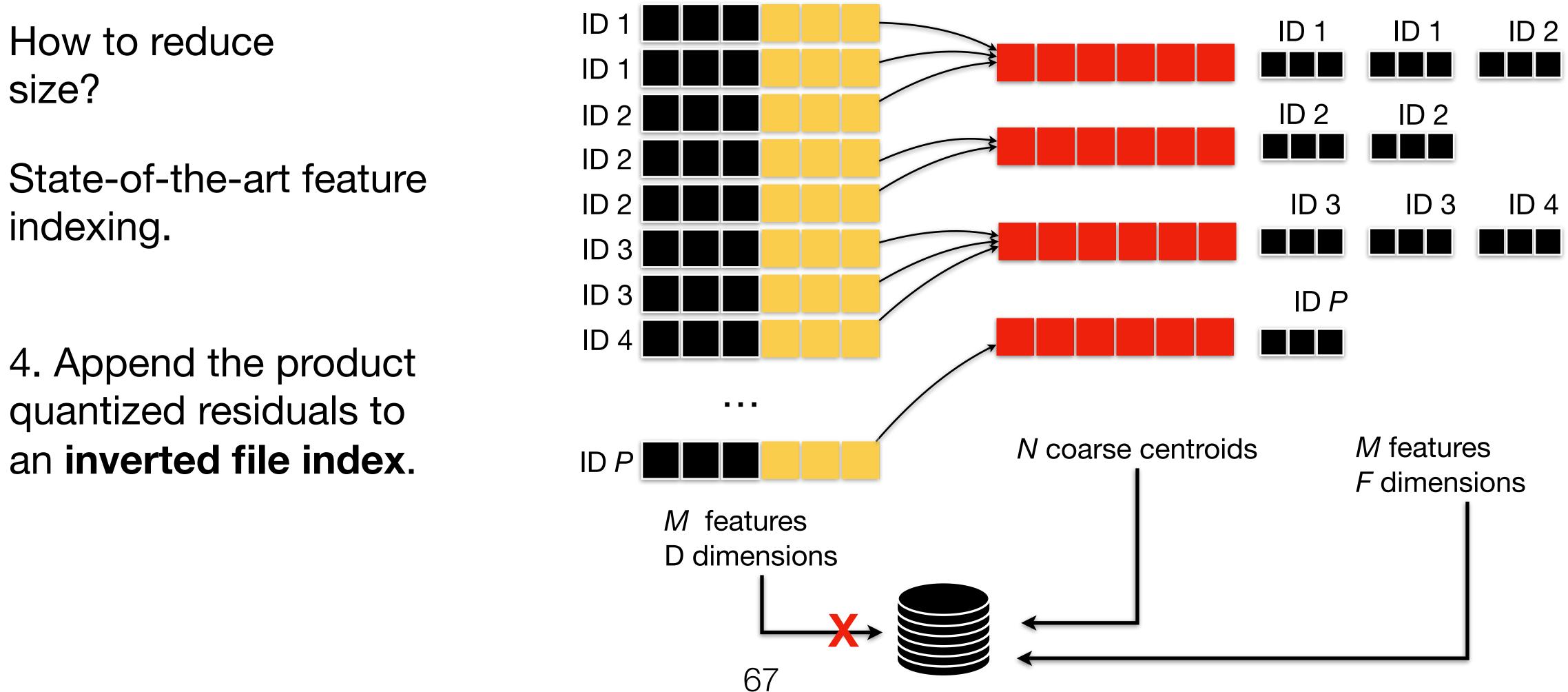


Toy Case (6D features, reality: 512D for faces)



an inverted file index.

Toy Case (6D features, reality: 512D for faces)

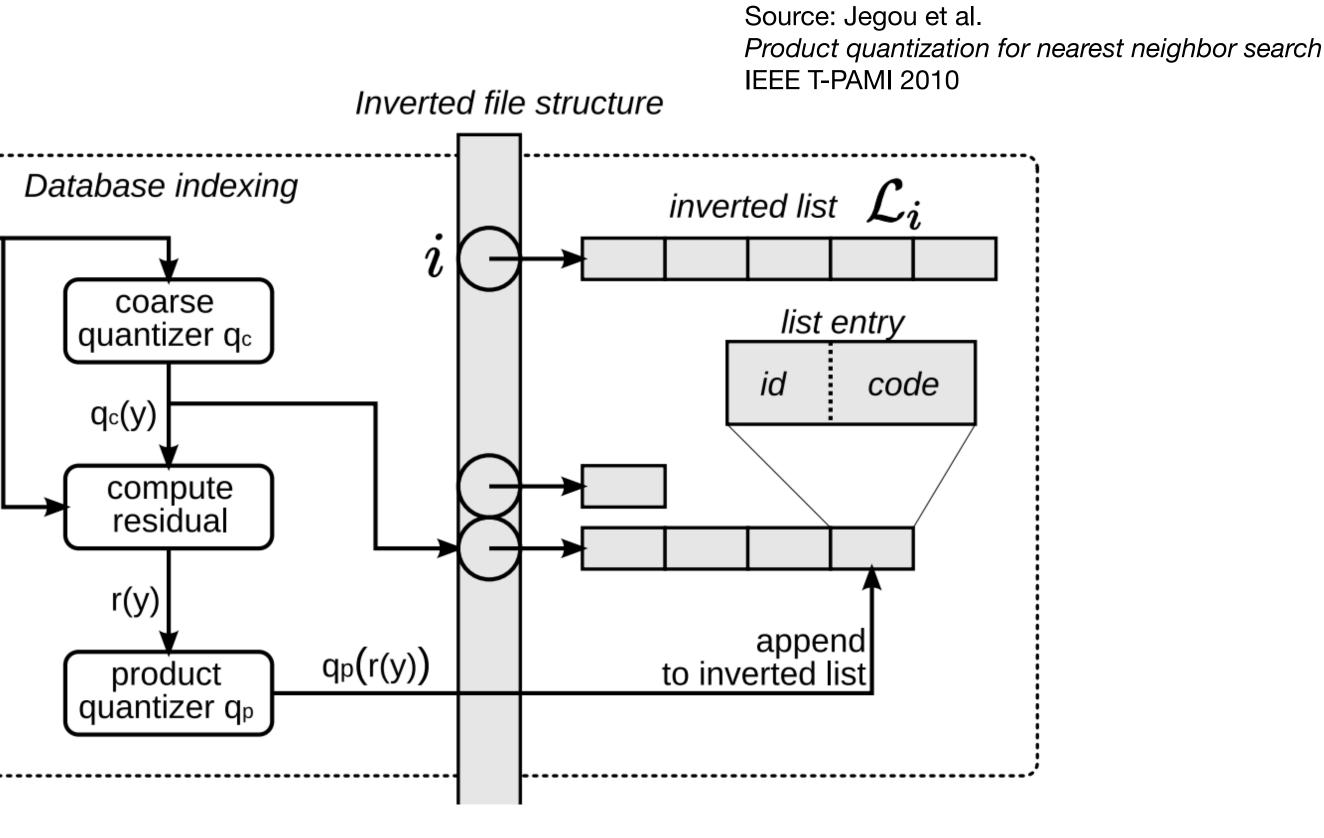


an inverted file index.

How to reduce size?

State-of-the-art feature indexing.

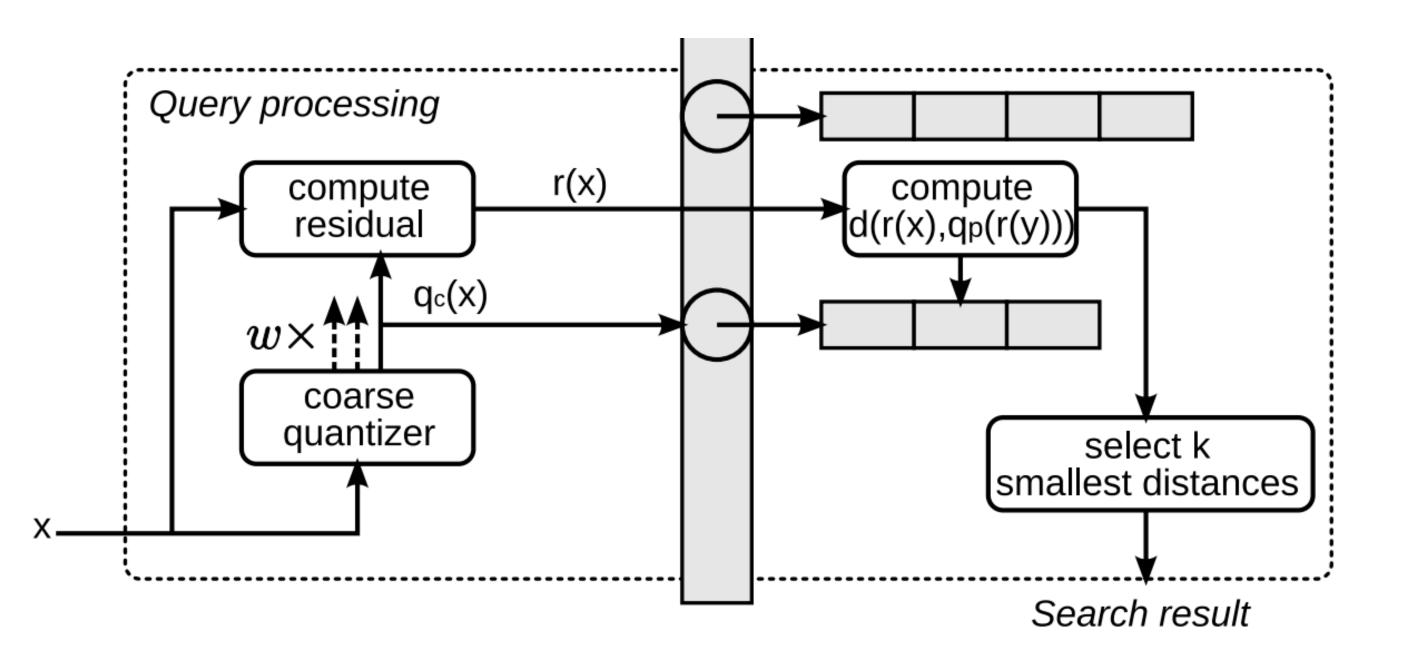
Usage example: Indexing.



How to reduce size?

State-of-the-art feature indexing.

Usage example: **Retrieving k-nearest.**



Source: Jegou et al. Product quantization for nearest neighbor search IEEE T-PAMI 2010

How to reduce size?

State-of-the-art feature indexing.

Available implementation.

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU. It is developed primarily at Facebook Al Research.

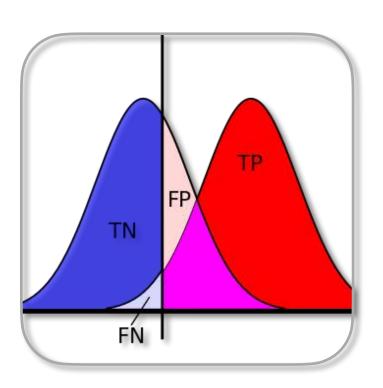
()

Product \vee Team Ente	erprise Explore \sim Marketplace Pricing \sim	Search	Sign in Sign up
Facebookresearch / fa		 Actions Actions 	
° main → ♀ 13 branche	s ⊙ 17 tags Go to -github-bot Auto × 1806c6a yesterday		About A library for efficient similarity search and clustering of dense vectors.
.circleci .github benchs	Add IndexNSGPQ and IndexNSGSQ (#2218) Change default branch references from master contrib clustering module (#2217)	7 months ago	 ♂ faiss.ai □ Readme ▲ MIT License ③ Code of conduct
c_api cmake conda	Generalize DistanceComputer for flat indexes (Move from TravisCI to CircleCI (#1315) Fix packaging (#2121)	11 days ago 2 years ago 4 months ago	 ☆ 16.6k stars ◆ 443 watching ♀ 2.6k forks
contrib demos	contrib clustering module (#2217) Add NNDescent to faiss (#1654)	last month 13 months ago	Releases 13
faiss misc tests	Automatic type conversions for Python API (#2 Enable clang-format + autofix. Automatic type conversions for Python API (#2	yesterday 13 months ago yesterday	on Jan 10 + 12 releases

https://github.com/facebookresearch/faiss

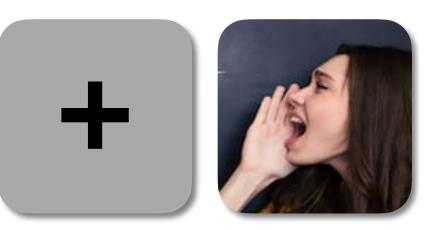
What's Next?

Content



Basics Concepts **Metrics** Metric implementation

Core Traits (3) Concepts **Baseline implementation** Data collection Evaluation Attacks Assignments

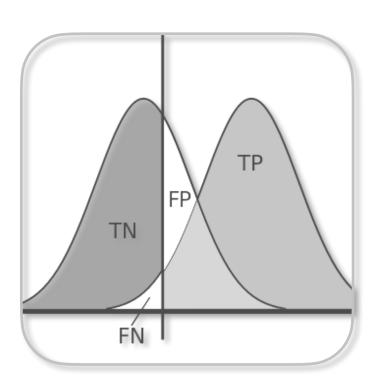


Alternative Traits and Fusion Concepts

Invited Talks (2) State of the art Future work

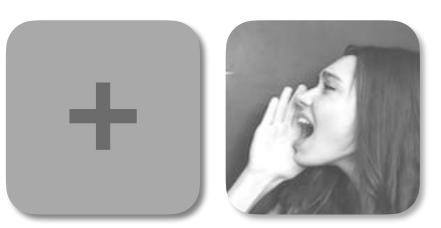
What's Next?

Content



Basics Concepts Metrics Metric implementation

Core Traits (3) Concepts **Baseline implementation** Data collection Evaluation Attacks Assignments



Alternative Traits and Fusion Concepts

Invited Talks (2) State of the art Future work

