
Biometrics (COMP388-002/488-002)
Loyola University Chicago, Fall 2023
Assignment 1: Comparison of Biometric Systems
Due date: Oct 2, 11:59 PM ET
Total: 10 points

1. Introduction
The purpose of this assignment is to train and evaluate the students’ abilities to compare the
output of different Biometric systems, regardless of the trait they rely on. To do so, three files
containing Biometric system outputs are being provided, one for each hypothetical system,
namely s1.csv, s2.csv, and s3.csv (https://tinyurl.com/an2vucee). The Python function to load
the content of these files into memory was provided in the first coding class
(https://tinyurl.com/bdjeeh5k).

1.1. Input file format
Each input file is a text file containing a header line (starting with the “#” character, which should
be ignored), and 10,000 following lines, one for each response of the respective Biometric
system. Lines contain comma-separated values (CSV, hence the “.csv” extension), with one
value related to the actual label (a.k.a. ground truth) of the output provided by the system, and
the other value related to the score computed by the system. We call each of these lines a
“(label, score)” system observation. Figure 1 summarizes the content of s1.csv, for illustration.

Output of System 1. All scores express similarities.
label [0: impostor, 1: genuine], similarity score
0,67.1673
1,122.1142
1,123.3850
1,93.5485
0,21.3947
(...)

Figure 1. The first 7 lines of file s1.csv

Labels are either 0 (for impostor trait presentations, such as face presentation followed
by a wrong identity claim) or 1 (for genuine trait presentations, such as face presentation
followed by a correct identity claim). Scores are real numbers comprising either similarities or
distances between the presented trait and the claimed identity template, computed by the
respective hypothetical system. Each input file independently defines if all of its scores are
either similarities or distances.

1.2. Assignment directions
To complete this assignment, you will need to access the Google Colab notebook
(https://tinyurl.com/bdjeeh5k) explained in class and make your own copy. After downloading
and unzipping the three CSV output files from Sakai to your local computer and uploading them

https://tinyurl.com/an2vucee
https://tinyurl.com/bdjeeh5k
https://tinyurl.com/bdjeeh5k

to your Google Colab notebook copy, please follow the instructions and answer the questions
presented in Sec. 2.

There is no formal template for providing your answers. You may use the editor you like.
The following option should work fine:

● A single PDF file or Word document containing all your answers and generated figures.
Please submit your file through the respective open assignment in Sakai by October 2,

2023, 11:59 PM ET.

2. Questions
Considering the content of the three input files s1.csv, s2.csv, and s3.csv, one for each
hypothetical Biometric system, please answer the following questions. You may leverage and
adapt the functions and metrics available in the given Google Colab notebook.

2.1. For each one of the three Biometric systems, what score threshold (a.k.a. operating point)
should you use? Please explain your answer and describe how you have obtained each one of
the respective system thresholds. (1 point)

2.2. For each system, plot and provide a graph with the distributions of their respective scores.
(1 point)

2.3. According to the d’ (d-prime) values that one might compute for each system, which of the
three should you use if you had to select only one for identification? Please justify your answer.
(1 point)

2.4. Plot and provide a single graph with the ROC curves and AUCs of all three systems
together. A reference to help: https://tinyurl.com/23fkm3jf. (1 point)

2.5. According to the ROC curves and AUC values, which one of the three systems should you
use if you had to select only one for identification? Please justify your answer. (1 point)

2.6. Re-do question 2.4 but this time leveraging the optimized scitkit-learn
(https://en.wikipedia.org/wiki/Scikit-learn) implementation of AUC calculation (see
https://tinyurl.com/nsyu2k9b). Which implementation is faster; the naive one presented in class
or the one using scikit-learn? Please justify your answer with collected runtimes. (5 points)

https://tinyurl.com/23fkm3jf
https://en.wikipedia.org/wiki/Scikit-learn
https://tinyurl.com/nsyu2k9b

