

Warsaw University of Technology UNIVERSITY OF NOTRE DAME

Highlights

- Assessment of the performance of non-expert humans in iris recognition.
- Presentation of irises in diverse conditions: healthy, disease-affected, twins', with difference in pupil dilation, and deceased samples.
- Novel approach of annotation-driven iris verification, based on matching and non-matching regions.

Motivation

What? — Accountable iris recognition.

Why? — Solutions from the literature are effective, but not human-friendly enough. How to convince people who do not possess image processing expertise?

Approach

Observe people: how do they perform iris recognition?

Iris Conditions

Dataset

1360 manually segmented nearinfrared irises of 512 individuals, captured with varied sensors.

Easy for computers

Twins'

Hard for computers

With difference in pupil dilation

Performance of Humans in Iris Recognition The Impact of Iris Condition and Annotation-driven Verification

Daniel Moreira (dhenriq1@nd.edu), Mateusz Trokielewicz, Adam Czajka, Kevin W. Bowyer, Patrick J. Flynn

Disease-affected

Deceased

	Session 1 (20 iris pairs, 114 people)			Session 2	
	Irises	Humans	Software*		Irises
Genuine	Healthy easy	91.28	95.00	Impostors Genuine	Llaalthy
	Healthy difficult	79.07	90.00		Healthy e
	Pupil-dynamic	43.90	61.25		Healthy di
	Deceased	51.95	33.57		Pupil-dyna
	Disease-affected	70.80	25.00		Deceas
Impostors	Healthy easy	84.30	100.00		Healthy e
	Healthy difficult	76.16	100.00		Healthy dif
	Twins	55.81	100.00		Twins
	Deceased	83.90	100.00		
	Disease-affected	91.00	100.00		Overall
	Overall	70.11	79.43		

*OSIRIS (open-source iris recognition software)

Confidence

How confident were people when they were right? How about when they were wrong?

Revised Decisions Did all iris conditions benefit from annotation-driven verification?

Verification Time

Were people who spent more time verifying irises better than the others?

Conclusions

62.00

68.47

**with only humans

- regions between pairs of irises.
- pairs of deceased and disease-affected irises.

• Most challenging cases to people: with difference in pupil dilation and twins'. • People performed better when they annotated matching and non-matching

People performed better than automated solutions when verifying genuine