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Abstract

Automatically detecting violence in videos is paramount
for enforcing the law and providing the society with bet-
ter policies for safer public places. In addition, it may be
essential for protecting minors from accessing inappropri-
ate contents on-line, and for helping parents choose suit-
able movie titles for their children. However, this is an
open problem as the very definition of violence is subjec-
tive and may vary from one society to another. Detect-
ing such nuances from video footages with no human su-
pervision is very challenging. Clearly, when designing a
computer-aided solution to this problem, we need to think
of efficient (quickly harness large troves of data) and effec-
tive detection methods (robustly filter what needs special
attention and further analysis). In this vein, we explore a
content description method for violence detection founded
upon temporal robust features that quickly grasp video se-
quences, automatically classifying violent videos. The used
method also holds promise for fast and effective classifica-
tion of other recognition tasks (e.g., pornography and other
inappropriate material). When compared to more complex
counterparts for violence detection, the method shows simi-
lar classification quality while being several times more ef-
ficient in terms of runtime and memory footprint.

1. Introduction

Violence is a worldwide public health problem, which
constantly demands efforts from authorities to provide the
population with safer public places [38]. As part of these ef-
forts, experts have been inspecting solutions for performing
computer-aided violence detection in camera footage. Such
solutions can be useful for supporting crime solving (e.g.,
suspect identification) — in Forensic scenarios — while al-
leviating the job of officers.

Regarding the entertainment industry, the exposure to vi-
olence in the media (e.g., television and movies) represents
a risk to the health of children, contributing to episodes of
aggressive behavior and desensitization to violence [12]. In

this direction, researchers have also been investigating dif-
ferent forms of providing automated content filtering, of
movies and on-line streams, with the aim of supporting
video rating and recommendation.

In the last few years, progress in violence detection has
been quantified mainly due to the MediaEval Violent Scenes
Detection (VSD) task [16]. Among the proposed solutions,
the typical approach relies upon spatio-temporal video char-
acterization, since it has long been proven that spatio-
temporal descriptors, such as space-time interest points
(STIP) [27] and dense trajectories [35], improve the effec-
tiveness of violence classifiers [0, 32].

Nevertheless, the literature of violence detection, in gen-
eral, lacks of proper performance evaluation. We show
that existing spatio-temporal video descriptors normally
demand high computational power, thus impairing the fi-
nal system performance, specially in terms of runtime and
memory footprint.

The fast detection of violent content is important in
surveillance scenarios (in which, for instance, the real-
time identification of violent events shall be determinant
for saving lives), and in Forensic scenarios (in which the
fast identification of violent content among millions of files
shall allow law enforcers to catch red-handed criminals).
Moreover, if automated violence detection is transparently
performed in low-memory devices, such as smart-phones
and tablets, it shall ubiquitously protect audiences without
harming the user experience.

This paper explores a fast end-to-end Bag-of-Visual-
Words (BoVW)-based framework for violence classifica-
tion. We adapt Temporal Robust Features (TRoF) [29], a
fast spatio-temporal interest point detector and descriptor,
which is custom-tailored for inappropriate content detec-
tion, such as violence.

This paper is organized as follows. Section 2 discusses
the related work, while Sections 3 and 4 presents the frame-
work for violence detection and the custom-tailored spatio-
temporal detector and descriptor, respectively. Section 5 de-
tails the experimental setup, while Section 6 reports the ob-
tained results. Finally, Section 7 concludes the paper and
elaborates on possible future work.



2. Related Work

There is a well-known auditory and visual film gram-
mar of the movie industry, which has been systematically
explored by researchers. Pioneer movie-aimed works em-
ployed at least one of the following aspects for infer-
ring scene nature: sound effects (e.g., gunshots, explo-
sions, screams), visual effects (e.g., fire and blood), scene
and soundtrack pace rates, as indicators of frantic mo-
ments [10, 21, 22, 30]. Such publications tested their ap-
proaches on Hollywood action movies, but they did not re-
port the same metrics over the same titles. Moreover, in
face of the current easiness of recording videos, and con-
sidering the growing offer of on-line amateur content, these
solutions may fail due to the heterogeneity of material (e.g.,
illumination conditions, low video quality, and absence of
special effects).

Some works in the literature have taken advantage of the
BoVW approach for providing more general solutions. For
instance, through the use of motion patterns with a BoVW-
based approach, Souza et al. [32] addressed the problem
of detecting physical violence such as fighting. Similarly,
Bermejo et al. [6] employed the BoVW framework with
motion scale-invariant feature transform (MoSIFT [11])
for detecting violence in ice hockey clips. However, the
clear drawback of these works resides in the fact that they
were developed for a very specific type of violence; conse-
quently, the results are not directly comparable.

Aware of the absence of a standard benchmark for vi-
olence detection, the MediaEval Benchmarking Initiative'
provided, in the occasion of proposing the VSD task, a com-
mon ground-truth and standard evaluation protocols. Since
then, myriad of works were proposed in the literature, aim-
ing at attending the task.

Most VSD task participants relied upon a three-step
pipeline for violence detection [1, 3, 14, 18, 26, 28, 39].
The typical configuration consists of: (i) low-level fea-
ture extraction from visual, auditory, or textual modalities,
(i1) mid-level feature extraction using BoVW-based repre-
sentations, and (iii) high-level supervised classification.

In the low level, most of the approaches explored both
auditory (e.g., mel-frequency cepstral coefficients, a.k.a.,
MECC [, 14, 18, 26, 28, 39]) and visual information (e.g.,
scale-invariant feature transform, ak.a., SIFT [26, 39],
STIP [18], dense trajectories [14, 26, 39]). Avila et al. [3]
additionally incorporated textual features extracted from
movie subtitles. In the mid level, the low-level features were
frequently encoded using the BoVW approach [, 18] or
the Fisher Vector representation [ 14, 26, 39]. Finally, in the
high level, support vector machines (SVMs) were the most
used alternative for classification [1, 14, 18, 26, 28, 39].
All the mentioned solutions performed multimodal fusion

Ihttp://www.multimediaeval.org/

of classifiers at the decision level, except for the work of
Derbas and Quénot [ 18], who provided an early combina-
tion of visual and auditory features.

None of the mentioned publications, however, assessed
performance in terms of memory footprint and processing
time. Indeed, aiming at performing fast shot classification,
Mironici et al. [28] even gave up using spatio-temporal fea-
tures, when conducting experiments on the VSD dataset.
Taking a different strategy, we still rely upon the spatio-
temporal characterization of motion, but we focus on per-
forming efficient low-level feature detection and content de-
scription, in terms of low-memory footprint and small pro-
cessing time, for the task of violence classification.

3. Violence Detection Framework

Violence is an abstract and complex concept, whose
translation to visual characteristics is not straightforward.
To cope with such complexity, we follow the literature
and betake a three-layered BoVW-based approach for re-
ducing the semantic gap between the low-level visual data
representation (e.g., pixels), and the high-level concept of
violence. Furthermore, we explore a performance-tuned
spatio-temporal framework, which is liable to be executed
in real-time, even on modest hardware, since it presents
low-memory footprint.

Figure 1 depicts the used framework, with the three lay-
ers properly chained in a low-to-mid and mid-to-high fash-
ion, from the left to the right. The existence of a visual
codebook, and a supervised learning classification model,
implies that every system, constructed under the guidance
of such framework, shall operate in one of two modes. In
the off-line operation, the visual codebook is constructed
(or updated) for posterior reference, and the desired behav-
ior of the system is learned from labeled video examples
(often referred to as the training phase). In the on-line oper-
ation, arbitrary unknown videos are presented to the system
for content labeling (a.k.a., test phase), based on the previ-
ously learned codebook and classification model.

As one might observe, the first layer is related to the task
of video description (Steps A:1 and B:1, in Figure 1), which
is usually implemented with the support of local descrip-
tors [34]. Given that we want to push temporal information
early on in the low-level stage, we recommend using spatio-
temporal descriptors. These descriptors deliver features that
somehow encode the variation of the frame pixel values, re-
garding not only their spatial configuration, but also their
disposition along the video time-line (i.e., pixels are an-
alyzed as voxels). STIP [27] and dense trajectories [35]
are typical representatives of such descriptors. However,
if spatio-temporal data are not parsimoniously used, they
lead to a higher computational cost in terms of both process-
ing time and memory footprint. In this context, we employ
TROF, an efficient — and yet effective — spatio-temporal
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Figure 1. The explored three-layered BoVW-based framework for video violence classification. On the left, the lighter path depicts the
“off-line” or “training” phase, in which the system is fed with labeled videos. On the right, the darker path depicts the on-line phase, in
which the previously learned model (composed of codebook and classification model) is used to predict the label of new videos.

local video descriptor (c.f., Section 4).

In the mid level, the aim is the combination of the low-
level features into global video representations, with inter-
mediate complexity, which are closer to the concept of vio-
lence. The mid-level pipeline is broken into two steps [7]:
coding and pooling (Steps A:3 and B:2). The coding step
quantizes the low-level descriptors according to a codebook
(Step A:2), while the pooling step summarizes the codes
obtained into a single feature vector. Here, we rely upon
the extraction of Fisher Vectors [31] — one of the best mid-
level representations in the Computer Vision literature [9]
— which encode the average first- and second-order differ-
ences between the low-level descriptions, and the compo-
nents of a Gaussian mixture model (GMM)-estimated code-
book.

Finally, in the high level, the goal is the application of
a supervised-learning method, for inducing a proper clas-
sification model from previously labeled samples (a.k.a.,
training dataset), which shall be used to predict the class of
any new observation. In the off-line operation, a classifier
is trained on the labeled mid-level feature vectors (Step A:4,
in Figure 1), and it is further used for predicting the label of
unknown vectors, in the on-line operation (Step B:3). At
this point, we apply a linear SVM, following the recom-
mendations of the Fisher Vector-related literature [31].

4. Temporal Robust Features

Spatio-temporal local video descriptors usually operate
at a high computational cost, in terms of memory foot-
print and of processing time, thus preventing their execu-
tion on limited hardware (e.g., mobile devices). To cope
with such limitations, we (i) custom-tailor a video motion
detector, which quickly computes an optimized amount of
spatio-temporal interest points, and (ii) apply an alternative
interest point descriptor, which efficiently represents local
motion, namely Temporal Robust Features (TRoF). In Sec-
tion 4.1, we explain the TRoF detection strategy, while in
Section 4.2, we present the TRoF description approach.

4.1. TRoF Detector

The TRoF detector is inspired by the still-image
speeded-up robust features (SURF) [4] detector, which is
very fast. The original solution identifies interesting local
structures (a.k.a., blobs) with scale o, on a target image I,
by thresholding the determinants of three-variable Hessian
matrices H (z,y, o), which are centered at candidate pixels
I(x,y). To quickly compute the Hessian determinants, the
SURF method replaces the inherent two-dimensional Gaus-
sian second-order derivatives with approximative box fil-
ters, which can be readily convolved with the integral image
of the target image. This leads to a fast blob detector, yet
scale-invariant.

Willems et al. [37] introduced an extension to such
mechanism, by adding the time dimension to the Gaus-
sian second-order derivatives. They suggested the use
of separated standard deviations for space (os) and for
time (o;), what led to five-variable Hessian matrices
H(l’,y,t70's,0't).

In a similar fashion, we also extend the Hessian ma-
trices, but with a different formulation, which is funda-
mental for real-time operation. In Equation 1, we ex-
press the content of a four-variable spatio-temporal Hes-
sian matrix H(x,y,t, o), such as we are adopting in this
work. Within it, L., (z,y,t,0s) is the convolution of
the Gaussian second-order derivative 0*G/(x, y,t, 05 ) /Oxx
with the voxel x(z,y,t) of the target video. Sim-
ilarly, L,y (z,y,t,05) refers to the convolution of
0?G(z,y,t,04)/Oxy with the voxel x(z, y, t), and so forth
th, Lyt’ Lyya and Ltt-

H(z,y,t,0st) =
Lox(z,y,t,0s¢)
Loy(z,y,t,05) L
th(.'E,’y,t,O'st) L

Liy(xayvtvo-st) th(l‘,y,t, Ust)
yy(x,y7t70'st) Lyt($7y7t,05t)
vt (T, Y, t,05t)  Let(x,y,t,04¢)

(e))

As one might observe, similar to the detection step pro-
posed by Knopp et al. [24], we employ a single standard de-
viation o for both space and time. At this point, differently
from Willems et al. [37], and for a matter of simplification,
we adopt a joint strategy that — as a relaxation — lets us
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Figure 2. Original SURF and respective TRoF box fil-
ters for approximating Gaussian second-order derivatives.
(a) Original SURF 0°G(z,y,0)/0zx approximative filter.
(b) TRoOF 0°G(z,y,t,0st)/Oxx approximative filter. (c) Orig-
inal SURF 0°G(x,y,0)/0xy approximative filter. (d)TRoF
0?G(z,y,t,0t)/Oxy approximative filter.

variate the scale of the detectable blobs faster and closer to
the former statement of Bay et al. [4]. We thus apply four
octaves of increasing Gaussian spatio-temporal standard de-
viations, and we perform a fast non-maximal suppression,
for gathering the blobs that present the largest Hessian val-
ues, within four-dimensional neighborhoods, considering
the immediate Hessian neighbors along the z-, y-, t-, and
o s¢-axes directions.

At first glance, the employment of a joint scale os; may
sound counterintuitive, given the distinct nature of space
and time. However, preliminary experiments revealed that,
besides the advantage of enabling real-time video descrip-
tion, thanks to the scale-space simplification, such strategy
works on par with scale-separated solutions, in the case of
detecting inappropriate content. That happens because of
the nature of the problem that we intend to solve. While
Willems et al. [37] aimed at action recognition, a duty that
is fundamentally of specialization nature, we are interested
in violence classification, a generalization task that does not
require a precise detection of repeatable interest points.

To continue the SURF detection extension to the
spatio-temporal case, we substitute the Hessian-related
Gaussian second-order derivatives 902G (z,y,t,04)/0xx,
0?G(z,y,t,04)/0xy, 0*°G(x,y,t,05)/0xt, etc., for
proper three-dimensional box filters. Figure 2(a) depicts
the original SURF box filter that approximates the Gaus-
sian second-order derivative 9°G(x,y,o)/0zx, with its
respective cubic version 0%G(w,y,t,04)/0xx, in Fig-
ure 2(b). Similarly, Figure 2(c) depicts the original
box filter that is related to the Gaussian second-order
derivative 9°G(z,y,0)/0xy, with its cubic counterpart
0?G(z,y,t,04)/0xy, in Figure 2(d). In these examples,
all filters approximate Gaussians with o = o5 = 1.2. For
obtaining the remaining four cubic filters, one just needs to
apply the proper rotations. Gray filter positions have weight
zero in the further convolutions, while white areas are posi-
tive, and black are negative.

Finally, to complete the SURF-inspired TRoF detection
strategy, we follow the work of Klaser et al. [23], and ade-
quate the notion of flat integral images to the volumetric na-

0(0,0,0” x|

Figure 3. Integral video representation. The outer box represents
the video space-time, with the x axis associated to the width, the
y axis to the height, and the ¢ axis to the video duration. The
inner gray box represents the cuboid region that is calculated by
Equation 2.

ture of videos, in order to let their content be efficiently con-
volved with the Gaussian-approximative cubic filters. That
leads to the concept of integral videos. Equation 3 defines
the value of an integral video Vx(x) at a spatio-temporal
location x(x,y, ). It is given by the sum of all voxel val-
ues belonging to the video V, which rely in a rectangular
cuboid region formed between x and the video origin.

Vo (x(x, 3, 1)) =222u, . 2
k=0

=0 7=0

Once the integral video is computed, it only takes eight
accesses and seven operations to calculate the sum of the
voxel values, inside any rectangular cuboid region, indepen-
dently of its size. For instance, the value V' of the volume
represented in gray in Figure 3 is given by Equation 3.

V=(A+C)=(B+D)— (A +C")Y+(B'+D). (3

With the integral video technique, we convolve box fil-
ters of any scale with the video space-time in constant time.

4.2. TRoF Descriptor

The former detection step delivers TRoF blobs, i.e., in-
terest points within the video space-time, which are charac-
terized by their three-dimensional position P(z,y,t), and
a spatio-temporal scale o4;. These blobs shall encompass
relevant motion phenomena.

To take advantage of such detected regions of interest
and use them associated with machine learning solutions,
we need to efficiently and effectively describe them math-
ematically. As suggested in [29], for efficient description,
we take only a limited amount of the blob voxels, yet con-
sidering their spatio-temporal disposition. We describe only
the voxels that belong to three orthogonal planes of interest:
the blob-centered spatial [z, y]-plane, and the blob-centered
temporal [z, t]- and [y, ¢]-planes. For effective description,
contrary to [29], where SURF descriptors were applied, we
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Figure 4. TRoF-described blob planes. The solid gray rectangles are HOG description blocks, which are all centered at the position
P(z,y,t), and present a spatio-temporal scale of 20s;. Each HOG block is divided into 4 x 4 inner cells, which are represented by internal
dashed rectangles. P and o,: come from a formerly detected interest point. (a) HOG block that is projected onto the [z, y] plane. (b) HOG
block that is projected onto the [z, ] plane. (c) HOG block that is projected onto the [y, ¢] plane. (d) Resulting spatio-temporal structure,

which is formed by the union of the three HOG blocks.

propose using histograms of oriented gradients (HOG) [15]
for capturing the variation of the blob voxel values.

Each plane of interest is described by a HOG block, di-
vided into 4 x 4 inner cells. Figures 4(a-c) depict each one
of these HOG blocks, in the form of solid gray rectangles.
As one might observe, each rectangle is properly divided
by 4 x 4 dashed subrectangles, which represent the HOG
inner cells. Figure 4(d) depicts the structural union of these
three HOG blocks. The resulting structure is inscribed in-
side a spatio-temporal cuboid, expressed in black dashed
lines. Such cuboid is supposed to be linked to a formerly de-
tected interest point: it is centered in the position P(z,y,t)
of such point, and has a spatio-temporal scale of 2 X ;.

For a low-memory footprint, we limit the number of
gradient histogram bins that are calculated in each HOG
cell to four. Thus, each HOG block delivers four values
for each one of its 4 x 4 inner cells, leading to a total of
64 description values. With the intent to register eventual
correlations among the three HOG blocks, that could be
helpful to distinguish violent from non-violent material, we
obtain the final TRoF feature vector by concatenating the
three 64-dimensional block descriptions, in the following
order: [z,y]-, [x,t]-, and [y, t]-plane. As a practical result,
the TRoF descriptor yields a set of 192-dimensional feature
vectors.

5. Experimental Setup

To validate the designed solution and compare it with the
existing methods in the literature, we adopt the MediaEval
2013 Violent Scenes Detection (VSD) dataset [16], which
is — to our best knowledge — the most recent dataset that
is appropriate for violent shot” classification’. It comprises

2 A shot represents a spatio-temporally coherent frame sequence, which
captures a continuous action from a single camera.

3Further editions of the VSD competition asked participants to localize
violent scenes, instead of classifying pre-segmented shots.

25 Hollywood titles of diverse genres, from extremely vi-
olent to musical. Shot segmentation is provided for all the
movies, and the resulting segments are individually anno-
tated as containing or lacking violent scenes, which “one
would not let an eight-year old child see” [16]. The annota-
tion process was carried out by seven human assessors, with
varied ages and cultural backgrounds, and the shot segmen-
tation was obtained through a proprietary software.

The dataset comes separated into a training set, with
18 movies distributed among 32,678 shots, and a test set
comprising seven movies divided into 11,245 shots. Ap-
proximately, 20% of all shots are violent.

The VSD task motivation was the development of sys-
tems that could help users choose suitable titles for their
children, by retrieving the most violent movie parts, for
parental preview [17]. As a consequence, competitors’ so-
lutions are compared from the perspective of retrieval: the
best performing systems are the ones that return the largest
number of violent shots, at the first positions of the top-k
retrieved shots, properly ranked by violence classification
confidence. For achieving that, the competition suggests
using the Mean Average Precision (MAP) at the 100 top
ranked violent shots (MAP @ 100), as the official evaluation
metric. Therefore, a solution is considered better than an-
other if it presents a higher MAP@ 100 value, since it in-
dicates that such solution returns less false positive shots
in the first positions of a 100-violent-shot ranked answer.
Additionally, as we provide a violence classifier, we also
report the area under the receiver operating characteristic
curve (AUC).

As the experimental setup, to make the comparisons fair,
we use the same mid and high levels — Fisher Vectors com-
puted on 256-word GMM codebooks, and linear SVMs im-
plemented with LIBLINEAR [20] — for all herein evalu-
ated techniques. In the low level, we first pre-process the
videos by resizing them to 100 thousand pixels, if larger,
similar to Akata et al. [2]. We extract TRoF, and compare



it with a dense application of HOG, and of STIP descrip-
tors (either detected, or under dense extraction, DSTIP).
Regardless of the low-level descriptors, we apply principal
component analysis (PCA) to reduce by half their dimen-
sionality, as suggested in [31, 35]. For training, we ap-
ply a grid search to find the best C' SVM parameter, with
Ce{2¢:ce[-5,-3,...,15]}.

HOG details: To provide a controlled baseline for the
use of TRoF, we extract HOG descriptions [15], which op-
erate over static images only, with the OpenCV C++ appli-
cation programming interface (API) [8]. With the FFmpeg
library [5], we extract the I-frames, which are densely de-
scribed with a regular spatial grid, at five scales. Precisely,
we use patch sizes of 24, 32, 48, 68 and 96 pixels, with step
sizes of 4, 6, 8, 11 and 16 pixels, respectively. Each patch
is described by a single HOG block, which is divided into
4 x 4 HOG cells. Each cell is described by eight bins, lead-
ing to 4 x 4 x 8 description values per patch. Hence, the
obtained HOG feature vectors are 128-dimensional.

STIP and DSTIP details: For the sake of saving ex-
perimental time, we choose STIP [27] as the representa-
tive of well-established spatio-temporal local descriptors,
instead of dense trajectories [36]*, which are very time- and
memory-consuming. In the experiments, we extract both
sparse — i.e., Harris-detected (STIP) — and dense STIP
(DSTIP) descriptors, with the code provided by Laptev [27].

TRoF details: During the calculation of the integral
video, in face of streams with long duration, the sum of
voxel values may lead to numerical overflow, besides pre-
senting large-memory footprint. To avoid this, we split the
video stream and compute the integral video at every 250
frames. In addition, given that the video streams are very as-
sorted, we cannot find a single Hessian threshold that works
for all the cases, when discarding irrelevant blobs. There-
fore, we select the 3,000 most relevant blobs within each
integral video, after sorting the candidate interest points ac-
cording to their Hessian values. All the mentioned values
were empirically determined.

6. Results

Table 1 shows the results for shot classification on the
MediaEval 2013 test dataset. The most successful official
competitors employed multimodal approaches, by combin-
ing auditory and visual content descriptors. In such works,
efficiency was not a major concern, hence all of them com-
bined more than four distinct content descriptors, includ-
ing still-image approaches (such as HOG), and even two

4The similarities between TRoF and the detector of Willems et al. [37]
(both are extensions of the SURF detection process to the spatio-temporal
case) would make the former solution a natural choice for performing com-
parisons. However, since source codes and executables are no longer avail-
able, and due to a lack of details in the related paper, we could not manage
to reproduce their method in a timely manner.

Solution Media Type ~ MAP@100T  AUC

) Multimodal [19] audio & video 0.690 *

3

% Multimodal [33] audio & video 0.689 *

% Multimodal [13] audio & video 0.682 *

(o}

&) Multimodal [25] audio & video 0.596 *
Dense HOG (DHOG) video only 0.459 0.706
Detected STIP (STIP) video only 0.541 0.694
Dense STIP (DSTIP) video only 0.588 0.739
TRoF (Proposed) video only 0.508 0.722

*Competitors did not report AUC.

TMAP@ 100 values were obtained with the same evaluation tool of [16].

All multimodal competitors’ solutions employed five or more description modalities,
with at least one being spatio-temporal.

Table 1. Results on the MediaEval 2013 dataset.

different types of spatio-temporal descriptors, at the same
time (such as STIP and dense trajectories), often produc-
ing a computationally costly solution in terms of processing
time and memory footprint.

On the other hand, in our case, we limited the explored
classifiers to the use of a single modality (either DHOG,
STIP, DSTIP, or TRoF), in order to investigate how one may
deal with the effectiveness-vs.-efficiency tradeoff.

Single modal solutions presented reasonable classifica-
tion effectiveness, with the DSTIP-based method present-
ing the highest AUC (0.739). TRoF scored second best
(0.722). Regarding MAP, as expected, the still-image ap-
proach presented the worst results, confirming that the
spatio-temporal information improves violence classifica-
tion. DSTIP again scored best — among the single modal
solutions — approaching even some multimodal perfor-
mances (c.f., [25], in Table 1). TROF, in turn, obtained a
more modest MAP@ 100 value (0.508); notwithstanding, it
presents the best performance, in terms of processing time
and memory footprint, as we shall see shortly.

To further investigate the required computational time,
Figure 5(a) depicts the correlation between MAP@ 100 and
the computational time spent to classify a selected portion
of 30 minutes of violent content, for each evaluated clas-
sifier. Figure 5(b), in turn, correlates the AUC with the
computational time. In both charts, internal values indicate
the processing frame rate, in frames per second (fps). The
higher the rate, the better the solution. As one might ob-
serve, TRoOF leads to a rate of 12.5 fps, in spite of being
spatio-temporal.

Likewise, for evaluating the strategies in terms of mem-
ory footprint, we also correlate MAP@100 and the AUC
with respect to the total disk space that is spent to store the
low-level feature vectors of the entire test dataset, which
consists of 15 hours of video footage. Figure 5(c) shows
the correlation between MAP@ 100 and disk usage, while



% TRoF © DHOG

o
3
=

=4
=
T

TRoF ‘
* . 2.6fps
[ O 12.5fps 3-3fps

54.0fps

MAP@100
o

o I

@ &

=3
e
@

T

S S S S S S S S
0 05 1 15 2 25 3 35 4 45 5 55 6
Processing Time (hours)

(a) MAP@100 x Processing time

156.8MBps

0.6F 12.2MBps
s * 60.2MBps
S 11.2MBps
® %4 TRoF ©)
-9
<
= 03
0.15

P S S S N S S ST S S
0 25 50 75 100 125 150 175 200 225 250 275 300
Disk usage (GB)

(c) MAP@100 x Disk usage

= 0650

Estip  @DsTIP
0.8
0.75F TRoF
4 ’k .6fps
0.7 O 12.5¢F 2.6fp
o 54.0fps P 3!
= 0657 -31PS

0.6

0.55[

S S S S S S S S '
0 05 1 15 2 25 3 35 4 45 5 55 6
Processing Time (hours)

(b) AUC x Processing time

08T T T T T T T T T T T T T
TRoF 156.8MBps

0.75F 11.2MBps  60.2MBps ‘ il
0.7t ©) il
12.2MBps

0.6["

P S S S S T S S O S S S
0 25 50 75 100 125 150 175 200 225 250 275 300
Disk usage (GB)

(d) AUC x Disk usage

Figure 5. Performance on the MediaEval 2013 dataset (shot classification) for effectiveness vs. efficiency. On the left, effectiveness denotes
MAP@ 100, while on the right it denotes AUC. On the top row, efficiency denotes computational time spent to classify a selected portion
of 30-minute video footage (same shots for all methods). Internal values indicate the processing frame rate, in frames per second (fps).
The higher the rate, the better the solution. On the bottom row, efficiency concerns disk storage space for the entire test dataset (15 hours
of video footage). Internal values indicate the amount of generated description megabytes per second of movie (MBps). The smaller the
amount, the better the solution. In all charts, the best solutions are at the top-left corner.

Figure 5(d) depicts the correlation between AUC and disk
usage. In both charts, internal values indicate the amount of
generated description in megabytes per second of footage
(MBps). The smaller the amount, the better the result.

In all charts, the best solutions occur on the top left re-
gions: they present high performance, despite of spending
less computational resources. In all the cases, TRoF is near
such privileged region. All experiments were conducted on
a 64-bit Linux machine, powered by a 2-GHz 12-core In-
tel(R) Xeon(R) processor (E5-2620), with 24 GB of RAM.

Although we do not have the proper time and disk us-
age measurements of the MediaEval 2013 competitors’ so-
lutions, we can still infer their performance from the im-
plemented STIP and DSTIP solutions, because they are in-
cluded among the many modalities that were employed by
those works. STIP and DSTIP can be seen as lower-bounds
to the time and disk usage of these solutions.

Finally, the numbers of TRoF in face of the MediaEval
2013 VSD dataset are promising. It presents the same mem-
ory footprint of STIP, despite being four times faster, and
presenting reasonable values of MAP@ 100 and AUC.

7. Conclusion

Violent video classification is a problem that has gained
attention from the scientific community, due to its rele-
vance. Specially in the last few years, progress in the
field has been quantified mainly due to the MediaEval VSD
task [16]. Among the proposed solutions, the typical ap-
proach relies upon multimodal video characterization, with
the compulsory use of spatio-temporal descriptors as one
of the modalities. That happens because it has long been
proven that spatio-temporal descriptors — such as STIP and
dense trajectories — improve the effectiveness of violence
detectors. We indeed verify it through the still-image HOG-
based solution, which presents the worst MAP@ 100 exper-
imental results.

In this vein, although the general perception in the litera-
ture dictates that spatio-temporal techniques are normally
computationally expensive and present a high-memory
footprint, the research on violence detection, in general,
lacks performance evaluation. In opposition to that, we re-
port the performance of the explored solutions in terms of



spent processing time and memory footprint. The results
have shown that the TRoF usage yields a processing frame
rate capacity of nearly 12 fps, and that it spends a mem-
ory amount of nearly 11 megabytes per second of described
footage, in spite of being spatio-temporal.

The performance of TRoF is possible mainly due to two
aspects. First, a four-variable spatio-temporal Hessian ma-
trix, which uses a spatio-temporal standard deviation that
is shared between space and time, for detecting the scale
of interesting phenomena. Second, a fast description of the
detected spatio-temporal interest points, which slices up the
detected region in three perpendicular planes [z,y], [z, 1],
and [y, t] of interest. Each plane is further described with
histograms of gradients, yielding a compact descriptor in
R192, This efficient representation, allied with a sparse set
of detected and representative points, allow us to properly
capture the most important motion-related aspects of a tar-
get video sequence.

As the shared spatio-temporal scale parameter is key for
the performance gain, one might wonder when it is inter-
esting to apply it. In our experience, we have learned that
whenever we have a generalization problem (e.g., generaliz-
ing video motion to more general concepts, such as pornog-
raphy and violence) this representation is appropriate. On
the other hand, when we have a specialization problem (e.g.,
using video motion for detecting specific actions, such as
gestures, walking, running, jumping, etc.), possibly an un-
tangled representation for the space and time scales would
be more appealing.

Although the current provided method yields a classifi-
cation quality of about 72% that may appear far from ideal,
it only shows the difficulty of the problem, when com-
pared to other existing solutions. The obtained results with
TRoF hold promise for deployment in mobile devices for
on-demand video analysis, and for filtering with faster de-
tection rates than its counterparts. For that, future directions
include further refining the detector and descriptor to in-
crease their discriminability, and also for parallelizing some
of their steps using available graphics processing units in
the used devices. Taking into consideration the current pop-
ularization and impressive results of deep neural networks,
it is worth considering putting them in perspective with the
solution explored herein, as well as investigating appropri-
ate forms of combining them, and exploring their comple-
mentarity, if existent. Finally, exploring other generaliza-
tion tasks is also a future work worth pursuing.
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