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Aos meus pais, com carinho.
É mais fácil enfrentar águas turbulentas,
quando há a certeza de um porto seguro.



I shall not today attempt further to define
the kinds of material I understand to be
embraced within that shorthand description
“hardcore pornography” (...). But I know it
when I see it...

(Potter Stewart)
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Resumo

Vídeo sensível pode ser definido como qualquer filme capaz de oferecer ameaças à sua
audiência. Representantes típicos incluem — mas não estão limitados a — pornografia,
violência, abuso infantil, crueldade contra animais, etc. Hoje em dia, com o papel cada vez
mais pervasivo dos dados digitais em nossa vidas, a análise de conteúdo sensível representa
uma grande preocupação para representantes da lei, empresas, professores, e pais, devido
aos potenciais danos que este tipo de conteúdo pode infligir a menores, estudantes, tra-
balhadores, etc. Não obstante, o emprego de mediadores humanos, para constantemente
analisar grandes quantidades de dados sensíveis, muitas vezes leva a ocorrências de es-
tresse e trauma, o que justifica a busca por análises assistidas por computador. Neste
trabalho, nós abordamos este problema em duas frentes. Na primeira, almejamos deci-
dir se um fluxo de vídeo apresenta ou não conteúdo sensível, à qual nos referimos como
classificação de vídeo sensível. Na segunda, temos como objetivo encontrar os momentos
exatos em que um fluxo começa e termina a exibição de conteúdo sensível, em nível de
quadros de vídeo, à qual nos referimos como localização de conteúdo sensível. Para ambos
os casos, projetamos e desenvolvemos métodos eficazes e eficientes, com baixo consumo de
memória, e adequação à implantação em dispositivos móveis. Neste contexto, nós forne-
cemos quatro principais contribuições. A primeira é uma nova solução baseada em sacolas
de palavras visuais, para a classificação eficiente de vídeos sensíveis, apoiada na análise
de fenômenos temporais. A segunda é uma nova solução de fusão multimodal em alto
nível semântico, para a localização de conteúdo sensível. A terceira, por sua vez, é um
novo detector espaço-temporal de pontos de interesse, e descritor de conteúdo de vídeo.
Finalmente, a quarta contribuição diz respeito a uma base de vídeos anotados em nível de
quadro, que possui 140 horas de conteúdo pornográfico, e que é a primeira da literatura a
ser adequada para a localização de pornografia. Um aspecto relevante das três primeiras
contribuições é a sua natureza de generalização, no sentido de poderem ser empregadas
— sem modificações no passo a passo — para a detecção de tipos diversos de conteú-
dos sensíveis, tais como os mencionados anteriormente. Para validação, nós escolhemos
pornografia e violência — dois dos tipos mais comuns de material impróprio — como
representantes de interesse, de conteúdo sensível. Nestes termos, realizamos experimentos
de classificação e de localização, e reportamos resultados para ambos os tipos de conteúdo.
As soluções propostas apresentam uma acurácia de 93% em classificação de pornografia,
e permitem a correta localização de 91% de conteúdo pornográfico em fluxo de vídeo. Os
resultados para violência também são interessantes: com as abordagens apresentadas, nós
obtivemos o segundo lugar em uma competição internacional de detecção de cenas vio-
lentas. Colocando ambas em perspectiva, nós aprendemos que a detecção de pornografia
é mais fácil que a de violência, abrindo várias oportunidades de pesquisa para a comuni-
dade científica. A principal razão para tal diferença está relacionada aos níveis distintos
de subjetividade que são inerentes a cada conceito. Enquanto pornografia é em geral mais
explícita, violência apresenta um espectro mais amplo de possíveis manifestações.



Abstract

Sensitive video can be defined as any motion picture that may pose threats to its audience.
Typical representatives include — but are not limited to — pornography, violence, child
abuse, cruelty to animals, etc. Nowadays, with the ever more pervasive role of digital data
in our lives, sensitive-content analysis represents a major concern to law enforcers, compa-
nies, tutors, and parents, due to the potential harm of such contents over minors, students,
workers, etc. Notwithstanding, the employment of human mediators for constantly ana-
lyzing huge troves of sensitive data often leads to stress and trauma, justifying the search
for computer-aided analysis. In this work, we tackle this problem in two ways. In the first
one, we aim at deciding whether or not a video stream presents sensitive content, which
we refer to as sensitive-video classification. In the second one, we aim at finding the exact
moments a stream starts and ends displaying sensitive content, at frame level, which we
refer to as sensitive-content localization. For both cases, we aim at designing and develop-
ing effective and efficient methods, with low memory footprint and suitable for deployment
on mobile devices. In this vein, we provide four major contributions. The first one is a
novel Bag-of-Visual-Words-based pipeline for efficient time-aware sensitive-video classifi-
cation. The second is a novel high-level multimodal fusion pipeline for sensitive-content
localization. The third, in turn, is a novel space-temporal video interest point detector
and video content descriptor. Finally, the fourth contribution comprises a frame-level
annotated 140-hour pornographic video dataset, which is the first one in the literature
that is appropriate for pornography localization. An important aspect of the first three
contributions is their generalization nature, in the sense that they can be employed —
without step modifications — to the detection of diverse sensitive content types, such as
the previously mentioned ones. For validation, we choose pornography and violence —
two of the commonest types of inappropriate material — as target representatives of sensi-
tive content. We therefore perform classification and localization experiments, and report
results for both types of content. The proposed solutions present an accuracy of 93%
in pornography classification, and allow the correct localization of 91% of pornographic
content within a video stream. The results for violence are also compelling: with the
proposed approaches, we reached second place in an international competition of violent
scenes detection. Putting both in perspective, we learned that pornography detection is
easier than its violence counterpart, opening several opportunities for additional investi-
gations by the research community. The main reason for such difference is related to the
distinct levels of subjectivity that are inherent to each concept. While pornography is
usually more explicit, violence presents a broader spectrum of possible manifestations.
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Chapter 1

Introduction

We define sensitive video as any motion picture that may pose threats to its audience.
Typical representatives include — but are not limited to — video pornography and scenes
depicting violence.

Taking into account the easiness and the multitude of ways to produce, share, and send
video streams over the Internet, it becomes clear that the diversity of content is untold.
Within such diversity, it is not hard to imagine that some streams may be sensitive, due
to inadequate audience, sex appeal, religious or cultural offensiveness. The reasons for the
diffusion of such material may be related to negligence (e.g., people who are not aware of
sharing their personal files), protest (e.g., the topless-based activism of Femen1), or even
malice (e.g., pedophiles).

Sensitive content is alarming because it may be really harmful (e.g., violent media
contribute to aggressive behavior in children, and desensitization to brutality [26]), and
even illegal (e.g., child pornography [50]). Hence, there is a need for regulating its use
over the Internet. However, the employment of human operators for constantly analyzing
tons of sensitive streams often leads to stress and trauma [9], justifying the search for
computer-aided analysis, for alleviating the job of moderators.

Notwithstanding, the automatic detection of sensitive video is a challenging and still
open problem, mainly due to the following aspects:

Big-data nature The biggest video-sharing website on the Internet states that 300 hours
of video are uploaded to its servers every minute2. From such number, we can have
a vague yet remarkable notion of the big-data nature of the provided service. How
to design more efficient solutions, for meeting such high demand?

Pervasiveness The same website estimates that hundreds of millions of hours are watched
every day on its platform. From this total, more than 50% happens on mobile
devices, attesting an increasingly high video pervasiveness. How to design more
ubiquitous solutions, that can operate on the consumer side, even on devices with
limited hardware?

1Cf. http://www.femen.org, accessed May 3rd, 2016
2Cf. http://www.youtube.com/yt/press/statistics.html, accessed May 3rd, 2016
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Subjectivity The sensitiveness of some contents depends on complex cultural and social
issues. For instance, while female topless is not offensive to South American in-
digenous societies, for some Muslims, the entire female body is considered intimate,
except for the hands and the face. How to design more general solutions, that can
be easily suited to a specific population, or sensitive concept?

Urgency The fast analysis of sensitive content is important in many scenarios. For in-
stance, in forensic situations, the fast identification of inappropriate content among
millions of files shall aid law enforcement by letting officers catch red-handed crim-
inals. How to design faster yet effective solutions?

This work approaches computer-aided sensitive-video analysis, by considering the
aforementioned open issues. In addition, we aim at investigating different forms of incor-
porating video temporal information, in a quest for more effective solutions to sensitive
analysis.

1.1 Hypotheses and Goal

Given our interest in using temporal information for sensitive-video analysis, we state the
following hypotheses to guide and justify the directions of this research:

H1 It is possible to efficiently use video temporal information for effective sensitive-
content classification, regarding low-memory footprint3 and small processing time4,
by combining simplified space-temporal video interest-point detection and descrip-
tion, with entire-footage representation through a single feature vector.

H2 It is possible to localize sensitive content within the video timeline by means of the
classification and fusion of time-overlapping video snippets5.

As one might observe, for the sake of research scope definition, we tackle the problem
of sensitive-video analysis as either (i) a problem of classifying sensitive video content, or
(ii) a problem of localizing sensitive content within the video timeline.

That helps us to define the goal of this research:

Goal Design and develop effective and efficient methods for sensitive-video classification,
and for sensitive-content localization within the video timeline.

Furthermore, we choose pornography and violence — two of the commonest types of
inappropriate material, specially for their relevance and negative impact on minors [81,
50, 95, 26] — as target representatives of sensitive content.

3Nowadays, we consider that a solution has low-memory footprint, if it, at least, is amenable to direct
implementation on mobile devices, such as smartphones and tablets.

4Preferably close to real time.
5A snippet is any video excerpt.
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(a) (b)

Figure 1.1: Application example of sensitive-video classification. In (a), the user activates
a scanning app of sensitive content, and in (b), the app enlists the sensitive (e.g., violent)
videos, with a progress bar depicting the scanning progress.

1.2 Application Examples

In this section, we define the problems of (i) sensitive-video classification, and of (ii)
sensitive-content localization. Moreover, we present one application example for each
problem type, in order to illustrate the utility of solving them. It is worth to mention
that the application possibilities are far from being limited to the given examples.

1.2.1 Sensitive-Video Classification

Sensitive-video classification is the decision problem of defining whether or not a given
video stream has any occurrence of a particular target sensitive content. In other words,
the related solution shall label a target stream as being representative of one of two classes:
sensitive or non-sensitive.

Figure 1.1 depicts a possible application of a sensitive-video classifier. The action starts
in (a), when a person (e.g., a forensic expert) activates a scanning app on a smartphone.
The app finds all the video files — stored in the device — that present sensitive content
(e.g., violence). In (b), the scanning progress can be checked by means of a progress bar,
and the sensitive videos are iteratively enlisted. Please verify that the smartphone may
stay offline during the entire process (what is shown through the offline icon, depicted
in the top right corner of the device screen). It means that the classification process
is performed locally, with no need of additional processing steps in external or remote
machines, despite eventual memory and processing restrictions of the smartphone.

1.2.2 Sensitive-Content Localization

Sensitive-content localization is the search problem of finding sensitive scenes within a
video timeline. In other words, the related system shall return the instants a video stream
starts and ends displaying sensitive content.
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(a)

(b)

(c)

Figure 1.2: Application example of sensitive-content localization. In (a), the user starts to
play a chosen video, within a tablet, through a safe video player. In (b), the video that is
being played is about to show sensitive content (pornographic). In (c), the pornographic
scenes are properly censored.

Figure 1.2 depicts a possible application of a sensitive-content locator. The action
starts in (a), with a person (e.g., a child) playing a chosen video, through a safe video
player, which was installed in a personal tablet. In (b), the video content is about to
depict sensitive (pornographic) scenes, which are properly prevented in (c), when the
pornographic scenes are properly censored, according to a sensitive-scene localization
process that works in the background.
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1.3 Contributions

By verifying the stated hypotheses, and pursuing the aforementioned goal, this work
contributes to the areas of Digital Forensics (e.g., Video Surveillance), Computer Vision
(e.g., Video Content Description and Video Content Classification), and Content-Based
Visual Information Retrieval (e.g., Video Content Filtering), with the following novelties:

End-to-end pipeline for efficient time-aware sensitive-video classification
Such pipeline consists of a three-level Bag-of-Visual-Words (BoVW) -inspired solu-
tion, which efficiently employs temporal information as an effective discriminative
clue for the task of sensitive-content classification. It incorporates temporal in-
formation in the low and mid levels, by means of efficient local space-temporal
descriptors (in terms of small processing time and low-memory footprint), and
entire-footage mid-level feature pooling, respectively. It relies on Gaussian-Mixture-
Models (GMM)-based codebooks, Fisher Vectors, and a linear Support Vector Ma-
chine (SVM), one of the most effective combinations that were ever reported in
the BoVW-related literature. It is of general purpose, in the sense that it can be
used — without step modifications — for the detection of diverse sensitive content
types (e.g., gore scenes, child abuse, cruelty to animals, etc.), including our desired
pornographic and violent ones. We validate the proposed pipeline for both porno-
graphic and violent content classification. The pipeline and its results are under
an ongoing process of scientific community’s appreciation, regarding pornography
classification [66], and violence classification [67].

Space-temporal video interest point detector and video content descriptor
Referred to as Temporal Robust Features (TRoF), such interest point detector and
video descriptor constitute a lightweight space-temporal alternative, when compared
to the more computationally intensive space-temporal solutions from the literature.
It is fast and presents low-memory footprint, what makes it possible to run on
limited hardware, such as mobile devices. To reach such efficiency, TRoF relies on
a sparse strategy, which detects an optimized amount of space-temporal interest
points within the video timeline. The detection process is Hessian-based, and relies
on integral video and box filters for fast computation. The description process,
in turn, is optimized by selecting only a small amount of video voxels around the
previously detected space-temporal interest points. We validate TRoF for sensitive-
video classification, and for sensitive-content localization. TRoF is also currently
under an ongoing process of scientific community’s appreciation, by means of the
papers [66, 67].

High-level multimodal fusion pipeline for sensitive-content localization
Such pipeline is based on the combination of different and independent sensitive-
snippet classifiers. Given that each snippet classifier can rely on a particular data
modality (e.g., video frames, audio stream, video space-time, etc.), the pipeline has
an important multimodal capability. Besides that, we recommend analyzing the
content of different time-overlapping snippets, in order to provide a dense sampling
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and a dense classification of the video timeline. The combination of classifiers is
done by means of a late fusion of the sensitiveness classification scores that are
returned by each snippet classifier. Scores that refer to the same video instant of
interest are used to generate a single time-localized fusion feature vector. For deduc-
ing the fusion-vector configurations that better indicate sensitive and non-sensitive
video moments, we employ machine-learning techniques. Similar to the pipeline for
sensitive-video classification, the present sensitive-content localization pipeline is of
general purpose; it can be used — without step modifications — for the detection of
diverse sensitive content types (e.g., gore scenes, child abuse, pornography, violence,
etc.). We validate it for both pornographic and violent content localization. The
pipeline is subject to the deposit of two patents, one in the Brazilian National In-
stitute of Industrial Property (INPI) [5], and the other in the United States Patent
and Trademark Office (USPTO) [6]. In addition, it led us to reach second place in
an international competition of violent scenes localization [4]. Finally, we intend to
submit the solution to the scientific community’s appreciation by means of a regular
paper [65].

Large frame-level-annotated pornographic video dataset
Referred to as Pornography-2k dataset, it is a challenging set of 2,000 webvideos,
which comprises 140 hours of video footage. Such dataset is useful for pornographic
video classification, in the sense that it comprises 1,000 pornographic samples, and
1,000 non-pornographic samples, which vary from six seconds to 33 minutes. In
addition, it is also useful for pornographic content localization, since we provide
frame-level annotation for the 140 hours of video footage, of which 91.5 hours depict
pornographic scenes, and 48.5 hours depict non-pornographic scenes. To the best
of our knowledge, Pornography-2k is the first pornographic dataset in the literature
that provides binary annotation (i.e., pornographic vs. non-pornographic) for every
one of its frames. The dataset is available free of charge to the scientific community,
upon request and the sign of a proper responsibility agreement, due to its sensitive
content.

1.4 Accomplishments

In summary, the main results of this research are:

• Two patents, one in the Brazilian National Institute of Industrial Property (INPI) [5],
and the other in the United States Patent and Trademark Office (USPTO) [6].

• Two journal publications, one under minor revisions [66], and the other in the final
stages of preparation [65].

• Three conference papers, two already published [4, 64], and one under revision [67].

• Second-place award in an international competition of video violence localization [4].
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1.5 Sponsorship

This research was 65% sponsored by Samsung Eletrônica da Amazônia Ltda., through
the Sensitive Media Project under coordination of Prof. Anderson Rocha, and 35% spon-
sored by the Brazilian Coordination for the Improvement of Higher Education Personnel
(CAPES). The two resulting patents are fully and exclusively licensed to Samsung Elec-
tronics. We herewith thank our sponsors for all the support during the research.

1.6 Thesis Roadmap

For a better understanding of the remaining parts of this thesis, we organized it as follows.
In Chapter 2, we review the literature, regarding the foundations of this work. In the
sequence, we divide the text into two major parts.

In Part I, we focus on the problem of sensitive-video classification, and on the verifica-
tion of hypothesis H1. It comprises three chapters. In Chapter 3, we present the solutions
that we are proposing for performing sensitive-video classification. In Chapter 4, we ex-
plain the experimental setup, and we report results for the classification of pornographic
video, while in Chapter 5, we do so for the classification of violent videos.

In Part II, we focus on the problem of sensitive-content localization, and on the ver-
ification of hypothesis H2. Similarly to the previous part, Part II also comprises three
chapters. In Chapter 6, we present the solutions that we are proposing for performing
sensitive-content localization. In Chapter 7, we explain the experimental setup, and we
report results for the localization of pornographic scenes, while in Chapter 8, we do so for
the localization of violent scenes.

Finally, in Chapter 9, we present the conclusions of the research, and we elaborate on
possible future work.





Chapter 2

Literature Review

In this chapter, we establish the foundations of this research. For that, we divide the state
of the art of sensitive-video analysis in three sections. In Section 2.1, we elaborate on the
problem of incorporating temporal information to the task of video content analysis, and
how researchers have been tackling it. In Section 2.2, we survey the works that deal with
pornographic content detection1, while in Section 2.3, we review the literature that is
related to the detection of violent content.

2.1 Temporal-Information Incorporation

This research is mainly founded upon Bag-of-Visual-Words (BoVW) approaches, to per-
form video content analysis. By doing so, we join the investigations of several other re-
searchers — in the field of Content-Based Visual Information Retrieval — that have been
betting on the BoVW model to reduce the semantic gap between the low-level visual data
representation (e.g., pixels), and the high-level concepts one may want to recognize (e.g.,
violence and pornography).

The typical BoVW video analysis pipeline can have its operation properly framed in a
three-layered representation. Within it, the (i) low-level layer refers to the video descrip-
tion, a process that commonly employs local descriptors to extract perceptual features
directly from the pixel values. One level up, the (ii) mid-level layer aims at combining
the low-level features into global video representations, with intermediate complexity. On
top of that, the (iii) high-level layer deals with the challenge of learning and predicting
the classes of the mid-level features.

Figure 2.1 depicts the typical BoVW framework, with the three levels properly chained
in a low-to-mid and mid-to-high fashion, from left to right. The existence of a visual
codebook, and a supervised learning classification model, implies that every system con-
structed under the guidance of such framework can operate in two modes. Firstly, in the
so-called training phase, the visual codebook is constructed (or updated) for posterior
reference, and the desired behavior of the system is learned from labeled video examples.
Secondly, in the test phase, unknown videos are presented to the system; in this case,
it must determine the video labels based on the codebook and classification model that

1Herein, we employ content detection and content analysis interchangeably.
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Figure 2.1: A typical three-level BoVW framework for video content analysis. On the top,
the darker box depicts the training system operation, in which video labels are known in
advance. On the bottom, the lighter box depicts the test operation, in which the codebook
and classification model — previously learned in the training operation — are used by
the system. Please notice that, in this case, the video labels are predicted only in the late
stages.

were formerly learned.
As a result of such characteristic, Figure 2.1 depicts the workflow with two paths: the

one related to the training system operation, depicted by the darker horizontal box, and
the one related to the test operation, depicted by the lighter one.

In the particular case of still-image analysis, several researches have been conducted
in the direction of finding better strategies to implement each one of the aforementioned
layers, as well as better methods to combine them [2, 21, 71, 16, 70]. However, in the case
of analyzing motion pictures, to the best of our knowledge, it remains unclear what are
the best ways to benefit from the time dimension that is inherent to videos.

Therefore, in the following sections, we delve into the alternatives we find in the
literature, for each one of the BoVW levels, regarding the incorporation of temporal
information.

2.1.1 Time-Aware Local Descriptors

In spite of the operation mode, the first step of a typical video-related BoVW framework is
always connected to the task of video description (steps A:1 and B:1, in Figure 2.1), which
we call low-level stages. At this point, we must consider that each frame — delivered by a
digital camera to a computer — corresponds to a collection of numbers that measure the
amount of light that was incident on particular locations (pixels), within a photosensitive
surface, at the very moment of capture. Thus, the inherent challenge is to extract useful
information from such numbers.

Concerning such challenge, Tuytelaars and Mikolajczyk [87] early attested the suc-
cess of the employment of local descriptors to the development of good computer vision
systems. One can find in the literature several alternatives of local descriptors, with Scale-
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(a) original (b) interest points (c) dense sampling

Figure 2.2: Illustration of interest points and dense sampling. Interest points provide
focus on relevant visual phenomena (e.g., edges, corners, blobs, etc.), while dense sampling
provides a systematic coverage of the image content.

Invariant Feature Transform (SIFT) [61] and Speeded-Up Robust Features (SURF) [11]
being probably the most referenced ones. These descriptors differ mostly in the type of
visual phenomenon they rely on to extract features, and in the methods engineered to
combine these features.

Keeping in mind the video nature as a sequence of frames in time, the conventional
descriptors rely solely on the space domain of the frames, thus analyzing the pixel values
strictly in the frame they occur. Such descriptors can be considered static, in the sense
that they do not consider the video time dimension, neither the order in which the frames
occur inside the video. SIFT and SURF are examples of these descriptors: they describe
the content of the frames, but they do not say a thing about how that content changes
along the video duration.

In contrast with the static features, there are descriptors that interpret the frame
pixels more like voxels. Pixel values are thus analyzed considering a third dimension, that
is their position in video time. Such descriptors can be considered time-aware, in the sense
that the feature vectors they deliver somehow encode the space-temporal information that
is inherent to the video stream. For instance, Space-Time Interest Points (STIP) [56] and
Dense Trajectories [93] are representatives of such type of descriptors.

Nevertheless, as a result of the addition of that third dimension in the description
process, more data becomes available to be analyzed in each description step. Hence,
that usually leads to a higher computational cost, both in terms of processing time and
memory consumption. Anyway, here, one can easily perceive an excellent opportunity
for incorporating temporal information. By using time-aware descriptors, it becomes
possible to push temporal information early on in the low-level stages of the framework.
Researchers in [83, 14, 90, 84] report to follow this path.

Regardless of being static or space-temporal, local descriptors can operate on im-
age/video content in one of two ways. On the one hand, they may count on strategies for
selecting interest points, according to the detection of relevant visual phenomena (e.g.,
edges, corners, blobs, etc.), to describe sparsely-localized feature vectors. That is the case
of the works in [37, 60, 14, 90]. On the other hand, they may admit a dense sampling of
the image/video space, in which the target content is systematically divided into patches
of fixed size, which are placed on a regular grid (possibly repeated over multiple scales);
all patches must then be described. Such strategy is employed in [89, 51, 8, 18]. Please
refer to Figure 2.2 for an illustration.
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2.1.2 A Single Bag for the Entire Segment

At the mid-level stages of the system operation, the main goal is to transform the previ-
ously extracted local descriptions into a global and richer video representation.

In the particular case of training operation, prior to the feature extraction itself, there
is the necessity to construct the visual codebook, for posterior reference. Step A:2 of
Figure 2.1 is related to such task. There, the basic idea is to somehow split the space of
low-level descriptions into multiple regions, being each region associated to a visual word.
Thus, by the storage of these visual words, we have a representative codebook.

Strategies to construct the visual codebook may vary a lot. Most of researchers tend
to follow the original solution of Sivic and Zisserman [82]. Therefore, they apply k-means
clustering on the description space, in order to pick k prototypes (commonly the centers
of the clusters) to represent the visual words [96, 100, 85, 14].

In a different fashion, other investigators manage to use simpler strategies, such as
randomly sampling the description space, in order to raffle k representatives. That is the
case of the works in [90, 84, 83]. Indeed, Nowak et al. [70] reported results produced by
such type of random construction, with no significant loss of performance when compared
to the systematic clustering approach.

Additionally, more sophisticated strategies can also be used, such as the application
of an Expectation-Maximization (EM) algorithm to establish a Gaussian Mixture Model
(GMM) on the low-level description space. In such cases, the centers of the GMM can be
understood as the visual words. Deselaers et al. [37] report to follow this path.

Another possibility is the use of Random Forests (RF) [47], a combination of decision
trees, which are individually built from the set of training descriptions. The inherent idea
is that each tree node splits the description space in two, and that each tree leaf represents
an actual cluster. Hence, the visual codebook corresponds to the set of all leaves, from
all trees. Mironică et al. [63] report to use this strategy.

Regardless of the task of codebook construction, and common to both training and
test phases (please see Figure 2.1), the main process of the mid-level feature extraction
can be broken into two steps: coding and pooling (steps A:3 and B:2 in Figure 2.1). The
coding step quantifies each low-level description with respect to its similarity to the words
that compose the visual codebook2. The pooling step, in turn, aggregates the quantization
obtained in the coding stage, by summarizing, usually in a single feature vector per video
frame, how often the visual words are being manifested.

There are many ways to code and to pool the low-level descriptions [16, 71, 52, 7, 8].
Boureau et al. [16] surveyed on the traditional methods (e.g., hard- and soft-coding, and
sum- and max-pooling). Perronnin et al. [71], in turn, experimented with the application
of Fisher Vectors, to encode the average first and second order differences between the
low-level descriptions, and the centers of a GMM-based codebook. Similarly, Jégou et
al. [52] proposed a simplification of the Fisher Vectors, by relying only upon the first order
differences, what they referred to as Vectors of Locally Aggregated Descriptors (VLAD).
Finally, Avila et al. introduced Bags Of Statistical Sampling Analysis (BOSSA) [7] and

2In the case of a RF-based codebook, the coding step represents each low-level description through the
leaves that are visited, when walking on the decision trees according to the low-level description content.
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BossaNova [8], as peculiar pooling strategies.
Notwithstanding, the pooling step offers an interesting chance to incorporate temporal

information into the mid level of the typical BoVW framework. The basic idea relies on
answering the following question: instead of pooling the codes — obtained in the former
coding step — per video frame, why not pooling and normalizing them per group of
consecutive frames (a.k.a., video segment)? As a result, it becomes possible to gather a
single feature vector for an entire video segment (i.e., a single bag), instead of gathering
various, one for every described frame.

Depending on the intent of the video analysis (e.g., content localization, or classifica-
tion), each segment may comprise only a single shot (in the case of Hollywood productions,
in which there are many camera angles and scene cuts), a full scene (with all the con-
secutive events that happen in the same environment), fixed-length snippets, or even the
entire video (useful for video clip classification). For instance, the authors of [99] estab-
lished a single bag for each video shot, aiming at content localization. In [55, 29], the
researchers established bags for fixed-length snippets, also focusing on localizing content,
and in [18, 90], the authors reported to follow the strategy of entire video pooling, as their
objective was to classify entire video clips.

2.1.3 Video-label Polling

Last but not least, at the high-level stages of the system operation, one finally has the
video content properly coded as feature vectors. Thus, in training operation, the next
step is to apply a method of supervised learning to deduce a good classification model,
which is able to support the labeling of the input data. That is related to step A:4, in
Figure 2.1. Once the classification model is defined, it becomes possible to predict the
label of every given feature vector. Step B:3 of Figure 2.1 refers to this moment.

Many machine learning solutions can be applied to this last classification process.
However, Support Vector Machines (SVM) [91] are the most widely used technique in
the BoVW literature, for both classification model learning, and label prediction. The
difference among the publications rely mainly on the type of the kernel that is used to learn
the separation hyperplane. For example, options may vary from Histogram Intersection
(HI) kernels, to Gaussian Radial Basis Function (RBF), to Chi-Square (χ2), and to Linear
ones.

In the particular case of video content classification, in the commonest pipeline, a
typical protocol of still-image classification is applied to predict the label of the video
frames individually [19, 8, 7, 51, 60]. Therefore, a natural question is how to rely on
such process, to label the entire video. The answer relies on ultimately incorporating the
temporal information into the high level. For that, a voting scheme is adopted, in order
to decide the label of the entire video. The class is thus assumed as being equal to the
most voted label across the described frames. Please notice that such strategy exists as
an alternative to the technique of establishing a single bag for the entire video.
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2.2 Pornography Detection

Pornography consumption over the Internet has systematically increased in recent years [81].
However, contrary to the pervasiveness and availability of its hosting web, pornographic
content cannot be disclosed to every audience, specially to minors, due to its highly sen-
sitive nature. Moreover, some categories of porn are illegal, with child pornography being
the obvious case [50]. Hence, pornography detection receives growing attention from law
enforcement, and from the scientific community.

In this section, we survey the state of the art of pornography detection, by grouping
the related work according to the features that they have in common.

2.2.1 Skin Detectors

The first efforts in the literature to automatically detect pornographic content, in digital
images or videos, conservatively associated pornography with nudity. Hence, plenty of
solutions were proposed, aimed at identifying naked bodies [73, 58, 43, 42]. In such works,
the detection of human skin played a major role, commonly enhanced by the identification
of human-body structures. A comprehensive survey on skin detection techniques can be
found in [53].

Notwithstanding, it has long been reported that skin-detection-based pornography
filters suffer from high rates of false positives, specially in situations of capturing activ-
ities with intense body exposure (e.g., swimming, sunbathing, boxing, etc.) [37]. That
motivated the research for more effective solutions.

2.2.2 BoVW-Based Detectors

Here, we survey the works that applied BoVW-based techniques to perform pornography
detection. Such solutions are close to the contributions of this research.

Multi-Categorical Porn

Aware of the advances promoted by BoVW approaches in the field of image recognition,
Deselaers et al. [37] were the first to pose the pornography detection problem as an
object classification one, rather than a skin detection or skin segmentation one. Thus, by
the application of a task-specific visual vocabulary, they were able to conceive a BoVW
model good at classifying images into five different categories of pornographic content:
(i) inoffensive, (ii) with lightly dressed people, (iii) with partly nude people, (iv) with
nude people, and (v) porn.

Nonetheless, a quick check on any pornographic website reveals an untold amount of
image/video categories. If on the one hand it exposes the naïveté of designing solutions
that rely solely on the detection of body and skin exposure (for example, one may easily
find many sexual activities concerning people dressed with fetishist clothes), on the other
hand, it reveals the complexity of any effort trying to establish reasonable and fully
embracing multi-categorical approaches.
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Nudity

In opposition to the multi-categorical strategy adopted in [37], some BoVW-field re-
searchers insisted in viewing pornography as a matter of finding nude people.

This was the case of Lopes et al. [59], who employed a color descriptor (HueSIFT) in
the low-level stages of their nudity classifier. Furthermore, they extended their solution
to work with video content, by proposing a late voting scheme based on the classification
of the individual video frames [60].

In the same direction of BoVW-based nudity classifiers, but this time betting on
explicit skin detection to improve results, Steel [85] implemented a Gaussian skin masking
for the isolation of image regions of interest (ROIs), before applying SIFT [61] as the low-
level part of their method (what they called mask-SIFT).

Notwithstanding, nudity is a much simpler concept than pornography. It depends
solely on the presence of naked people, whichever action they are taking. Pornography,
on the contrary, is more subjective, and heavily dependent on socio-cultural aspects.
Hence, it is not possible to guarantee that these nudity-detection-based works are enough
for the effective detection of pornographic content in real scenarios.

Porn vs. Non-Porn

Still in opposition to the multi-categorical approach, but as a third distinct BoVW-based
strategy, some researchers opted for tackling the problem as a matter of finding porn and
non-porn material. Comprehensively, most of them did not delve into defining or adopting
a clear concept for pornography, due to the difficulty of such task: it may involve cultural
aspects and even personal value judgments. In spite of such complication, many of these
researchers left, to the task of visual codebook construction, the opportunity for choosing
the particular types of pornography one would want to classify.

For instance, Ulges and Stahl [89] adopted a forensic setup, aimed at the classification
of child pornography in images. They densely described the target images in patches,
properly submitting them to a Discrete Cosine Transformation (DCT) in the YUV color
space, before constructing their visual codebooks.

In the same sense of porn vs. non-porn, but yet influenced by the idea of combining
skin detection with BoVW approaches, Zhang et al. [100] employed a skin-color-aware
visual attention model to identify image ROIs, prior to the low-level description process.
As such model relied on the detection of faceless skin-toned patches in the compressed
domain of the target images, the authors were able to select the yet-to-decompress ROIs
that should be effectively described, thus reducing the total time spent with pornographic
content filtering. To describe such ROIs, they applied a combination of color-, intensity-,
texture-, and skin-based descriptors.

Yan et al. [96] also used a color-aware visual attention model, which relied on the
identification of salient and skin-colored faceless image ROIs. For a fast description, the
researchers proposed the use of the SURF [11] descriptor.

Similarly, Zhuo et al. [102] proposed a BoVW approach that also focused on the fast
description of formerly detected skin-colored regions, by employing the Oriented fast and
Rotated BRIEF (ORB) descriptor [77].
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On the occasion of using binary-classification strategies to tackle the problem of
pornography detection, each one of the mentioned works adopted a particular interpreta-
tion of the pornography concept, besides reporting results on unrelated datasets, prevent-
ing direct and fair comparisons amongst different works. Moreover, with the exception
of Zhang et al. [100], all these works still inherited the drawbacks of skin-detection-based
filters. For instance, they are not useful for recognizing pornographic cartoons (which are
very common in pornographic websites, and do not contain live-action3 human skin).

Adopting a Porn Definition

Attained to the importance and complexity of defining pornography, a series of works [7,
90, 84, 8, 19, 18] were inspired by the publication of Short et al. [81], and jointly adopted
the concept of pornography as being any explicit sexual matter with the purpose of elic-
iting arousal. On top of that, as they tackled the classification of pornographic videos,
they provided an interesting database composed of 800 webvideos (the Pornography-800
dataset [7], containing 400 pornographic, and 400 non-pornographic videos), which facil-
itated the efforts of comparing video pornography classifiers.

From such trend, by the occasions of proposing BOSSA [7] and BossaNova [8] (both
extensions to the BoVW formalism), Avila et al. managed to solve the problem of clas-
sifying video pornography in the Pornography-800 dataset. They focused on enhancing
the BoVW mid-level data representation, by enriching the expression of the HueSIFT
descriptors extracted from the target images, with respect to the ones selected from the
visual codebook. In both works, they incorporated the video time dimension in the last
stages of their pipeline, by applying a voting scheme based on the classification of the
individual video frames.

Valle et al. [90], in turn, were pioneers at classifying pornography on the Pornography-
800 dataset with the use of bags of space-temporal (STIP) features. Souza et al. [84]
improved the results on the same database, by applying ColorSTIP — a color-aware
version of the STIP detector [56] — and HueSTIP, a color-aware version of the STIP
descriptor [56]. More than that, they innovated by keeping a single bag for the entire
target video, instead of keeping a bag for each described video frame, prior to late voting
schemes.

More recently, Caetano et al. [19, 18] also tackled the pornography classification prob-
lem related to the Pornography-800 dataset. In [19], as they maintained the BossaNova
technique within their solution, their innovation relied on the use of fast-to-compare binary
low-level image descriptors. Moreover, in [18], they improved the classification results by
also establishing a single bag for the entire target video, instead of a bag for each extracted
video frame.

Except for the works of Valle et al. [90] and Souza et al. [84], all the aforementioned
BoVW-based solutions used bags of static features, which ignore significant and cogent
information brought by video motion. However, motion information can be very revealing
about the presence of pornographic content. That motivated the following works, as well

3In videographic jargon, live action refers to the motion pictures that do not depict animated cartoons,
but “real” actors.
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as ours.

2.2.3 Time-Aware Detectors

Regardless of the BoVW model, and having in mind the issue of employing descriptors
more suitable to the non-static nature of video, publications other than [90, 84] were
proposed in the literature, aiming at incorporating temporal information early on in the
low-level description of video content.

For instance, Behrad et al. [12] tried to measure motion by analyzing the positions of
skin-toned patches along the video frames. Aided by tree-based data structures that were
used to register the temporal relation between distinct patches, they sought to pay atten-
tion to relevant volumes of skin, along the time dimension. Additionally, they extracted
feature vectors that relied on the frequency domain of the frames, seeking to, somehow,
code interesting skin motion.

Other publications relied on the content of the motion vectors intrinsically coded in the
Moving Picture Experts Group (MPEG) video compression format [88, 51, 101, 39, 76].
Particularly in the cases of Ulges et al. [88], and Jansohn et al. [51], BoVW approaches
were used to describe only the static visual features: the researchers, unfortunately, did
not consider to apply BoVW to the motion-aware data.

Although effective in diverse tasks, space-temporal video detection approaches nor-
mally demand high computational power, thus impairing the final system performance,
specially in terms of memory footprint, and spent processing time. In spite of that, none
of the mentioned publications assessed performance, or observed efficiency, an important
issue that we take into account in this work.

2.2.4 Third-Party Detectors

It is possible to purchase content-filter and crawler programs to inspect digital media for
pornographic hints [15, 28, 86, 25, 97, 49, 74]. Some of these solutions indeed deal with
visual content (image or video). For instance, MediaDetective [86] and Snitch Plus [49]
are off-the-shelf products, which rely on the detection of human skin to find potential
pictures or movies that may contain nude people.

Similarly, PornSeer Pro [97] is a free pornography classification system, which relies
upon the identification of specific features (e.g., nipples, breasts, anuses, vaginas, lips,
eyes, etc.) on individual video frames. Likewise, the work of Polastro and Eleuterio [74]
(a.k.a., NuDetective) also adopts skin detection, and is supposed to be used by the Federal
Police of Brazil, in forensic setups.

2.2.5 Summary

The comparison of pornography detectors from the literature is hardened by the absence
of standardized datasets, groundtruths, and metrics. A myriad of publications present
limited validation, except for the pornography classification methods that are proposed
in [19, 18, 8, 84, 90], which report results on the two-class Pornography-800 dataset [8].
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Indeed, very recently, Moustafa [68] reported results of fresh deep learning techniques on
such dataset as well. Please refer to Table 2.1 for details concerning these results.

In addition, given our interest in BoVW, in Table 2.1, we summarize the works in the
literature that applied BoVW-based solutions to classify pornography. From these works,
Table 2.2 selects the ones that specifically tackled video classification. It summarizes
in which level of the typical BoVW pipeline such strategies managed to incorporate the
temporal information.

Finally, as one might observe, we were not able to find BoVW-based strategies in
the literature that explicitly perform pornographic content localization within the video
timeline. Furthermore, to the best of our knowledge, there is no properly annotated
dataset to support the validation of such task either.
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Table 2.1: BoVW-based pornography classifiers from the literature. Most results employed different protocols/datasets and are not
directly comparable, except for the last five rows of the table, which employed the Pornography-800 dataset [8]. Moustafa [68] reported
an accuracy of 94.1% on the same dataset, by using deep learning techniques.

Reference Media Dataset Low level Mid level High level ACC (%)
(#pos/#neg) Feature detector Feature descriptor Codebook BoVW method (SVM kernel)

Im
ag

e

Lopes et al. [59] Nude 90/90 SIFT blobs Hue-SIFT k-means Traditional Linear 84.6
Steel [85] Nude 1,500/1,500 Skin ROIs Mask-SIFT k-means Traditional RBF *
Deselaers et al. [37] Porn 1,700/6,800 SIFT-based blobs Difference of Gaussians GMM Traditional HI **
Ulges and Stahl [89] Porn 4,248/20,000 Regular grid DCT k-means Traditional χ2 **
Zhang et al. [100] Porn 4,000/8,000 Skin ROIs Color, texture, intensity k-means Traditional Not reported 90.9
Yan et al. [96] Porn 20,000/70,000 Skin ROIs SURF k-means Traditional RBF ***
Zhuo et al. [102] Porn 8,000/11,000 Skin ROIs ORB k-means Traditional RBF 93.0

V
id

eo

Lopes et al. [60] Nude 89/90 SIFT blobs Hue-SIFT k-means Traditional Linear 93.2
Jansohn et al. [51] Porn 932/2,663 Regular grid DCT† k-means Traditional χ2 **
Ulges et al. [88] Porn 1,000/2,300 Regular grid DCT† k-means Traditional χ2 **
Avila et al. [7] Porn 400/400 Regular grid Hue-SIFT k-means BOSSA χ 87.1
Valle et al. [90] Porn 400/400 STIP blobs STIP Random Traditional Linear 91.9
Souza et al. [84] Porn 400/400 Color-STIP blobs STIP Random Traditional Linear 91.0
Avila et al. [8] Porn 400/400 Regular grid Hue-SIFT k-means BossaNova χ2 89.5
Caetano et al. [19, 18] Porn 400/400 Regular grid Binary descriptors k-medians BossaNova χ2 90.9

Traditional BoVW mid-level representation is obtained with hard coding and average pooling — ACC: accuracy
*It uses False Positive Rate (FPR) as evaluation measure — **It uses Equal Error Rate (EER) as evaluation measure
***It uses Receiver Operating Characteristic (ROC) curve as evaluation measure — †It uses other low-level features, but not with BoVW

Table 2.2: Level of temporal-information incorporation in BoVW-based video pornography classifiers. A tick on the low level indicates
the use of time-aware local video descriptors. A tick on the mid level indicates feature pooling and normalization for the entire video
footage. Finally, a tick on the high level indicates majority voting on the label of the individual video frames.

Reference Low level Mid level High level

Lopes et al. [60] ✔
Jansohn et al. [51] ✔
Ulges et al. [88] ✔
Avila et al. [7] ✔
Valle et al. [90] ✔ ✔
Souza et al. [84] ✔ ✔
Avila et al. [8] ✔
Caetano et al. [18] ✔
Caetano et al. [19] ✔
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2.3 Violence Detection

We now turn our attention to violence, which is a worldwide public health problem,
constantly demanding efforts from authorities to provide the population with safer public
places [95]. As a part of these efforts, experts have been investigating different forms of
performing computer-aided violence detection on surveillance cameras, with the intent
to support faster and more assertive official reactions, in situations of danger and crime
occurrence, while alleviating the job of human operators.

Regarding the entertainment industry, the exposure to violence in media (including
television, movies, music, etc.) represents a risk to the health of children, contributing
to episodes of aggressive behavior, and desensitization to violence [26]. In this direction,
researchers have been inspecting solutions to provide automated content filtering and
rating, on movies and online video streams, with the aim of preventing the disclosure of
violent material to inappropriate audiences.

In this section, we review the literature that is related to violent content detection,
grouping the publications according to their application purpose, and to the features that
they present in common.

2.3.1 Surveillance Detectors

Video streams from surveillance cameras are often silent and almost stationary, with well-
behaved backgrounds, and people-centered foregrounds. Hence, surveillance-aimed works
usually rely on background subtraction, people segmentation and tracking, and action
recognition of fight-related concepts (e.g., punches, kicks, etc.).

In addition, due to their single-source nature, surveillance video streams do not present
the notion of shots and scene cuts. As a result of that, the majority of works in the
literature have been tackling the problem of violence surveillance as a matter of localizing
events, within the stream timeline.

Nevertheless, just for an exceptional example, Hayashi et al. [46] were able to treat
the problem as a matter of classifying video clips as violent or not. For that, as they
wanted to detect assault-related events inside elevators, they suggested considering the
frames between get-into and get-out events as single clips. To label these clips, they
computed optical flow statistics for further decision making. With such strategy, they
reported violence recall and precision, when testing a video dataset of their own.

Back to the trend of violence localization, for instance, Datta et al. [31] used back-
ground subtraction, people segmentation, estimation of the direction and magnitude of
motion, among other methods, to feed a finite state machine and detect two standing peo-
ple fighting. Mecocci and Micheli [62], in turn, suggested the use of background detection,
and the analysis of the space-temporal complexity of local color conformations, to thresh-
old on the amount of estimated motion. Both works reported only specific situations, in
which their systems were able to localize violent acts along target stream timelines. No
quantitative assessments were reported.

Zajdel et al. [98], in turn, aimed at detecting two to four people fighting, and vandalism
against vending machines, inside train stations. They employed people segmentation and
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interest point tracking to register human activity, which was quantified regarding a five-
degree violent-activity scale. Additionally, moving trains were discarded by an optical-
flow-based detector. In contrast to the previous work, they admitted microphones on
the surveillance cameras, for exploiting complementary auditory features (e.g., pitch and
spectral tilt). For the labeling of the audio data, they reported the use of decision trees. In
the end, dynamic Bayesian Networks were used to implement a time-series model, which
was responsible for ultimately fusing all the feature labels. For reporting the performance
of their system, Zajdel et al. provided a 13-clip test dataset.

Surveillance detectors suffer from the drawback of not being suitable for detecting
violence in broad-category movies, because movies usually present intense film transition,
with variable pace rates. That is the main motivation for the next group of works.

2.3.2 Hollywood Detectors

Aware of the plot- and camera-oriented nature of Hollywood movies, many works in
the literature have been taking advantage of the well-known film grammar of the movie
industry. Although adopting different strategies, they have been similarly making use
of at least one of the following aspects, for inferring scene nature: sound effects, visual
effects, pace rate, and soundtrack.

Some researchers tackled the problem of classifying entire movie segments as violent
or not. For instance, Gong et al. [45] classified movie shots by relying on the detection
of gunshots, explosions, racing cars, screams, etc., through auditory features — such
as bandwidth, pitch, and Mel-Frequency Cepstral Coefficients (MFCC) [32] — and by
analyzing the scene and soundtrack pace rates, as indicators of frantic moments. For the
final labeling of each feature type, they employed SVM classifiers, which were late fused
by boosting techniques. With such strategy, Gong et al. reported violent-shot recall and
precision, when testing four action Hollywood movies.

Giannakopoulos et al. [44] recommended the use of visual (motion vectors on frame
blocks), and auditory features (e.g., Chroma [10] and MFCC). While visual features were
fed to K-Nearest Neighbors (KNN) classifiers, auditory features were fed to a more com-
plex combination of KNN classifiers and Bayesian Networks. In the end, a KNN-based
late fusion method was used for returning the resulting class of each video segment. The
authors reported the system recall and precision of gathering 9,000 violent one-second
movie segments (which were extracted from ten movies).

Chen et al. [22], in turn, aimed at the detection of blood, fights, and injured people,
by relying on visual clues only. For that, they suggested the segmentation of every movie
into shots, which were grouped into scenes. From the scenes, they extracted video motion
intensity (which was fed to an SVM classifier), and applied face and blood detectors. The
authors reported violent-scene recall and precision, when testing four Hollywood movies.

In opposition to the classification of violent segments, some researchers tackled the
problem of localizing violent events within the movie timeline. For example, Nam et
al. [69] turned to the application of thresholds on the values of auditory and visual features.
As auditory features, they explored the audio signal energy for detecting special effects
of gunshots and explosions, while for visual features, they used pixel colors for detecting
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fire and blood, and motion density for detecting frantic scenes. Similar to [31] and [62],
Nam et al. made only qualitative assessments of their system performance, by pinpointing
samples of violence localization, within movie timelines.

Cheng et al. [24], in turn, suggested the employment of only auditory features (e.g.,
bandwidth, volume, MFCC), for localizing gunshots, explosions, engines, helicopters, car
breakings, etc. For that, they trained Hidden Markov Models (HMM), which were used
to recognize the target sound events. To lately combine the used features, the authors
suggested to seek specific combinations of sound events, that represented problem-domain
situations of violence (e.g., gunplay, which was composed of gunshots, explosions, and
engines). For modeling such situations, they adopted the concept of GMM-based semantic
contexts. Besides presenting qualitative assessments of the detected events, Cheng et
al. reported the recall and the precision of gathering semantic contexts, when testing
five-minute segments that were extracted from five Hollywood movies.

In face of the current easiness of recording videos, and considering the growing offer
of online amateur content, some of the aforementioned violence detectors may completely
fail, due to the heterogeneity of material (regarding, for instance, illumination conditions,
video and sound quality, erratic camera movement, and absence of plot or special effects).
Given such situation, how could one automatically detect violent scenes in the broadest
possible way? In this sense, some works in the literature appealed to the BoVW approach
for designing and developing more general solutions.

2.3.3 BoVW-Based Detectors

We now turn our attention to some of these BoVW-based detectors, as they are relatively
close (in concept) to the contributions of this research.

First Efforts

Souza et al. [83] proposed a motion-aware BoVW-based solution for classifying video
shots as violent or not. The particularities of their strategy relied on the prior necessity
of segmenting the target video streams into shots, as a very first step. The idea was to
establish — after the hard coding of STIP-detected space-temporal low-level descriptions
— one bag of features for each shot, as well as the further training and use of a linear SVM
shot classifier. Experiments were conducted on a dataset comprising 400 webvideos (200
depicting aggressive behavior, 200 without hostility), and the motion-aware STIP-based
solution was compared to a still-image SIFT-based counterpart, based on classification
accuracy. By doing so, they were able to highlight the importance of using space-temporal
features in violent content detection.

Similarly, Bermejo et al. [14] addressed video violence classification by applying a
BoVW-based approach whose initial stages relied upon either STIP or Motion SIFT
(MoSIFT) [23]. Again, the aim was to employ motion-aware low-level visual descriptors
in the process. Experiments were conducted on a dataset that comprised 1,000 50-frame
clips, which depicted hockey matches. Positive samples comprehended hockey fights, over
which the authors reported violence classification accuracy.
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The aforementioned work presented the limitation of reporting results on different
datasets, with distinct metrics. Even the concept of violence was not the same, thus
preventing direct comparison with other existing works in the literature, and a proper
measure of the progress in the field. Problems such as this one motivated the MediaEval
initiative, about which we shall discuss next.

MediaEval Initiative

By the occasion of proposing the Violent Scenes Detection (VSD) task, the MediaEval
Benchmarking Initiative for Multimedia Evaluation4 provided the scientific community
with a unified violence dataset, with a common groundtruth — which reflected a clear
understanding of the concept of violence — and standardized evaluation protocols. Since
then, plenty of works were proposed in the literature, aiming at attending the VSD task.
In the following, we focus on the researches that relied upon BoVW-related concepts
for doing the job. For more details on the MediaEval initiative, and reviews about all
MediaEval attendants, please refer to the reports in [80, 33, 34].

MediaEval Shot Classification

In its first years, the VSD task challenged participants to classify pre-segmented video
shots as violent or not. In opposition to the works of Souza et al. [83] and Bermejo et
al. [14], which used only visual features, a common trend among the VSD task attendants
was the combination of visual and auditory features.

For instance, Acar et al. [1] calculated motion vectors from the shot frame blocks,
and also extracted MFCC features from the shot audio streams. Curiously, is spite of
training a first SVM shot classifier directly with the low-level motion vectors, in the
case of the auditory features, however, these authors experimented with a bag-of-words
approach. Hence, they applied k-means on the MFCC descriptors, for constructing an
audio codebook, and established a Bag of Auditory Words (BoAW) per shot, prior to
training a second SVM shot classifier. In the end, to provide a late fusion of features,
they suggested to feed a third SVM classifier with the outputs of the previous ones.

In the same direction, Derbas and Quénot [36] proposed the use of Histograms of
Optical Flow (HOF) [57] for describing STIP-detected space-temporal interest points, and
MFCC for describing the audio stream. The most evident particularity of their approach
relied on the early fusion of the low-level features, which were concatenated according to
a randomly selected subset of all possible combinations, within a given video shot. By
interpreting such concatenations as joint audio-visual features, the authors constructed
codebooks with them, and established bags of audio-visual words, per shot, which were
fed to SVM classifiers.

Lastly, aiming at performing fast shot classification, Mironică et al. [63] gave up us-
ing space-temporal features, in the particular case of the MediaEval dataset5. Instead,
they employed fast global still-image frame description (e.g., based on Histograms of Ori-
ented Gradients, HOG [30]), along with plenty of audio descriptors (e.g., MFCC, flux,

4Cf. http://www.multimediaeval.org/, accessed May 3rd, 2016.
5Mironică et al. [63] also applied space-temporal descriptors, but for other smaller datasets.

http://www.multimediaeval.org/
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rolloff, etc.). In the mid level, codebooks were constructed with the support of Random
Forests, and shots were represented by means of a VLAD-based approach. In the high-
level, for each type of feature, one independent SVM shot classifier was trained. For
ultimately fusing the outputs of these SVM classifiers, the authors recommended the use
of a weighted-sum function.

For the sake of highlighting an open issue, none of the mentioned violent video clas-
sifiers had their efficiency analyzed, in terms of memory footprint and processing time.
Except for Mironică et al. [63], all of them made use of space-temporal video detection
approaches, which normally demand high computational power. In the particular case of
Mironică et al. [63], although they aimed at fast shot classification, they assessed perfor-
mance for the task of video genre classification only, but not for violence detection.

MediaEval Scene Localization

More recently, the VSD task challenged participants to localize violent scenes within the
video timeline. For that, they maintained the two-class frame-level-annotated groundtruth,
but did not provide any shot segmentation to the public.

That led to a major contrast between the previous BoVW-related classification works,
and the further localization ones. Attendants of the past shot-classification task had
often adopted the straightforward strategy of establishing a bag per provided shot, for
further discrete classification. In opposition, attendants of the newly introduced content-
localization task had to reckon with (i) the granularity of mid-level pooling (due to the
absence of shots), and (ii) the method of online bag score fusion, for providing content
classification with temporal continuity (a basic requirement for the localization task).

Regarding the granularity problem, given the many possibilities of video segmentation
(frames, shots, time-overlapping snippets, etc.), in what unity should one pool the mid-
level features, in order to provide bag labels that were more supportive of the task of
content localization? One bag (and thus one label) per frame? One bag per second?
Concerning the online bag score fusion, how should one combine the violence scores of
the many discrete bags, in test execution, for providing a continuous answer?

Reasoning about all these open questions, Zhang et al. [99] kept the idea of segment-
ing the target streams into shots. For that, they employed a third-party shot boundary
detection method. In the mid-level, for each type of feature (e.g., SIFT on regular grids,
Dense Trajectories, and MFCC), they represented each shot by a proper Fisher Vector
(equivalent to the notion of a bag). In the high-level, each set of feature-related Fisher
Vectors was fed to a particular SVM classifier (i.e., they trained one SVM per feature
type). Then, a weighted sum of classification scores was used for the final shot classifica-
tion. Given that the labeled shots did not present time overlaps, Zhang et al. simplified
the fusion of discrete bag scores. Their system just returned a time-sorted concatenation
of the shot violence scores, when in test execution.

Contrary to [99], Lam et al. [55] opted for dividing the streams into non-overlapping
five-second snippets. In the mid-level, for each type of feature (e.g., SIFT on regular grids,
Dense Trajectories, and MFCC), each snippet was encoded as a Fisher vector, and as a
bag of words. Besides that, the authors fed keyframes to a Deep Neural Network (DNN),
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for obtaining a third alternative of mid-level representation (a further improvement on
their original task attendance [54]). In face of plenty of mid-level representations (Fisher
vectors, bags of words, and DNN outputs), one SVM classifier was trained for each feature
type. To combine everything, a weighted sum of classification scores was performed, for
the final snippet classification. In the end, in the online snippet score fusion, Lam et
al. [55] proceeded as [99], configuring their solution to return a concatenation of the
adjacent snippet violence scores.

Dai et al. [29], in turn, divided the target streams into non-overlapping fixed-length
three-second snippets. In the mid-level, for some features (e.g., Dense Trajectories), they
represented each snippet by a Fisher Vector. For other features (e.g., STIP and MFCC),
they established conventional bags of words, one for each snippet. In face of such diversity
of representations, they trained one SVM classifier for each feature type. Additionally,
they fed some of the features to a DNN, that worked as a high-level classifier, equivalent
to the SVMs. Once more, a weighted sum of classification scores was performed, for the
final snippet classification. In contrast to the previous solutions, Dai et al. suggested a
more complex strategy for the online bag score fusion. Snippet classification scores were
first smoothed by a proper function. Then, each snippet received a label (violent or non-
violent), according to a threshold on the smoothed scores. In the end, adjacent snippets
with the same label were merged into a single segment, whose final violence score was set
as the average of the merged scores.

The solution for violent-content localization we are proposing in this work is contempo-
raneous to the above-mentioned researches of [99, 55, 29]. With such strategy, we reached
second place in the 2014 MediaEval VSD task competition, regarding the localization
of violent scenes within webvideos. In opposition to [99, 55, 29], we recommend a late
fusion of distinct time-overlapping-snippet classifiers, which shall rely upon different and
complementary data modalities (e.g., video frames, audio stream, and video space-time).
The combination of classifiers is done with machine-learning techniques, which are used
to determine the best way of combining the classification scores that are returned by each
snippet classifier (i.e., through a meta-learning procedure). In addition, the solution is
amenable to the localization of sensitive contents other than just violence; we also validate
it for pornography localization. For a complete description of the method, validation and
experiments, please refer to Part II.

2.3.4 Summary

In Table 2.3, we summarize the works in the literature that applied BoVW-based solu-
tions for detecting violence (regarding both classification and localization challenges). In
contrast to the pornography-related solutions, all these works made use of space-temporal
features, by employing low-level time-aware descriptors (e.g., STIP, MoSIFT, Dense Tra-
jectories, and MFCC), and establishing a single bag per shot (or per interest snippet).
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Table 2.3: BoVW-based violence detectors from the literature. Results are directly comparable if they share the same dataset.

Reference Dataset

Low level Mid level
High level

MAP
Feature detector Feature descriptor Codebook Method (SVM kernel)

C
la

ss
ifi

ca
ti

on

Souza et al. [83] Violence-400 SIFT blobs; STIP blobs SIFT; STIP Random Traditional BoVW Linear *

Bermejo et al. [14] Hockey Fights STIP blobs; MoSIFT STIP; MoSIFT k-means Traditional BoVW HI *

Acar et al. [1] MediaEval 2012 MFCC MFCC† k-means Traditional BoAW RBF 0.545

Derbas and
Quénot [36] MediaEval 2013 MFCC and STIP MFCC + HOF (early

fusion) k-means Traditional BoVW RBF 0.690

Mironică et al. [63] MediaEval 2013 Regular grid; MFCC, etc. HOG; MFCC, etc. Random Forests VLAD RBF 0.760

L
oc

al
iz

at
io

n Zhang et al. [99] MediaEval 2014 Regular grid; Dense
Trajectories; MFCC

SIFT; Dense Trajectories;
MFCC GMM Fisher Vectors Linear 0.566

Lam et al. [55] MediaEval 2014 Regular grid; Dense
Trajectories; MFCC

SIFT; Dense Trajectories;
MFCC k-means; GMM Traditional BoVW; Fisher Vectors Linear‡ 0.564

Dai et al. [29] MediaEval 2014 STIP; Dense Trajectories;
MFCC

STIP; Dense Trajectories;
MFCC k-means; GMM Traditional BoVW (STIP, MFCC);

Fisher Vectors (Dense Trajectories) χ2; Linear‡ 0.630

Traditional BoVW and Traditional BoAW mid-level representations are obtained with hard coding and average pooling
MAP: mean average precision (MediaEval VSD task official metric)
*It reports accuracy as evaluation measure — †It uses other low-level features, but not with BoVW — ‡It also performs DNN-based classification



CHAPTER 2. LITERATURE REVIEW 42

2.4 Final Remarks

In general, sensitive-content detection techniques are non-generalizable and purpose-
dependent. For instance, most pornography detectors rely upon skin recognition, which
might not be useful for detecting violence. Similarly, a multitude of violence detectors
rely upon blood and special-effects recognition, which might not be useful for pornogra-
phy detection. That hardens the duty of dealing with the high subjectivity of the target
concepts. For example, it might be difficult to adapt skin-recognition-based pornography
detectors to the reality of tropical countries, where body exposure is common and well-
accepted. Under such circumstance, how should one proceed to reduce false negatives?
In this work, we propose broader machine-learning general-purpose pipelines, that can
be adapted to most of the sensitive contents one might want to detect (e.g., violence,
pornography, child abuse, cruelty to animals, etc.). All one needs to do is to provide the
algorithms with a properly annotated dataset, with enough sensitive and non-sensitive
examples. Of course the notion of “enough” here depends on the difficulty of the problem,
but often a few hours of each concept is enough for a good generalization of the designed
detectors.

In the particular case of video pornography detection, the traditional approach extends
the still-image classification process to video, by simply labeling the frames individually,
and then performing majority voting to decide the label of the entire clip. That is a
poor design, that does not take into account video motion, which might be very revealing
about the sensitiveness of the target stream. Indeed, even well-known breakthrough
video representations from the literature, such as Fisher Vectors, were never applied to
the problem of pornography detection, to the best of our knowledge. Moreover, we were
able to find in the literature only works that tackled video pornography classification.
There is a lack of solutions for pornography localization, as well as standardized frame-
level annotated datasets. In this work, we contribute to the scientific community by
tackling these issues, by proposing more effective motion-aware solutions, and by releasing
a large frame-level annotated pornographic dataset, which is fundamental for pornography
localization.

In the particular case of video violence detection, there is already an available stan-
dardized dataset (MediaEval), and the available solutions in the literature have long been
applying video representation techniques, such as space-temporal descriptors, and Fisher
Vectors to the problem. Nevertheless, efficiency is not a commonly investigated matter,
specially in terms of memory footprint, and spent processing time. It is not investigated
also in the case of pornography detection. As a consequence, solutions are probably not
ready to deal with the big-data and urgent nature of the sensitive-content detection task
(given that efficiency is not a major concern), and they might not be amenable to run
on hardware-limited mobile devices, to benefit from their pervasiveness. These are open
issues in the literature that we also consider in this work.

In the following, we introduce and validate the methods we have mentioned thus far.
More specifically, in Part I, we tackle the sensitive-video classification problem, while in
Part II, we deal with sensitive-content localization.





Part I

Sensitive-Video Classification
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Chapter 3

Getting Clues from Video Space-Time

Sensitive-video classification is the decision problem of defining whether or not a given
video stream has any occurrence of a particular sensitive content. By definition, labeling
a stream as positive means that the target sensitive concept is present within it. In
opposition, labeling as negative indicates that the target concept is absent.

In this chapter, we introduce an end-to-end approach for time-aware sensitive-video
classification, which is designed to be efficient (i.e., to be fast and to present low-memory
footprint). The pipeline efficiency mainly relies upon a novel space-temporal interest point
detector and video descriptor, namely Temporal Robust Features (TRoF), which is also
introduced.

This chapter is related to hypothesis H1 (please refer to Section 1.1), which states that
it is possible to efficiently use video temporal information for effective sensitive-content
classification, by combining simplified space-temporal video interest-point detection and
description, with entire-footage representation through a single feature vector. It aims
at the goal of designing and developing effective and efficient methods for sensitive-video
classification. For that, we organized the text as follows. In Section 3.1, we detail the
video classification pipeline, while in Section 3.2, we introduce the TRoF video descriptor.
We then present final remarks related to the proposed solutions in Section 3.3.

3.1 Time-Aware Pipeline for Efficient Sensitive-Video
Classification

Sensitive concepts such as pornography and violence represent high-level semantic cat-
egories, whose translations to visual characteristics are not straightforward. As already
mentioned, to cope with such complexity, we propose to rely on BoVW-based strategies,
for reducing the semantic gap between the low-level visual data representation (e.g., video
frame pixels), and the high-level target sensitive concept.

Moreover, given our interest in performing effective and efficient time-aware sensitive
video classification, we introduce a general-purpose end-to-end BoVW-based pipeline,
which efficiently incorporates temporal information as an effective discriminative clue for
the task of sensitive-video classification. We say that such pipeline is of general purpose, in
the sense that it can be used — without step modifications — for the binary classification
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(positive vs. negative) of diverse sensitive content (e.g., violence, pornography, gore scenes,
child abuse, etc.). For employing the pipeline concerning a specific concept, all one needs
to do is to provide a properly annotated training dataset, with positive and negative
examples.

Figure 3.1 depicts the proposed pipeline, with the inherent three levels. As expected
from a typical machine-learning solution, the pipeline can be executed either in (i) training
mode (represented by the left larger column), or in (ii) test mode (represented by the right
darker column).

In the former mode, the labels of the videos are known in advance, and are used
for training the class-prediction capabilities of the system. For the sake of illustration,
we start the training operation with only two videos (video A, positive, and video B,
negative), but in a real-world application, it would involve much more samples. At this
point, efficiency is not a major concern, since the system shall be trained only a few times
(ideally just once). In the latter operation, in turn, the system shall efficiently predict the
label of arbitrary videos (e.g., video X ), with low-memory footprint, and small processing
time. In the following sections, we detail each pipeline level, from low- to high-level stages.

3.1.1 Low-level Stage

First of all, for the sake of efficiency — and similar to Akata el al. [2] — we resize the
video frame resolution to fr pixels, if larger, keeping the original aspect ratio. That is
related to Steps A:1 and B:1, in Figure 3.1, and considerably reduces the amount of data
to be analyzed.

Given that we want to push temporal information early on in the low-level stage, we
suggest the employment of local space-temporal descriptors, for the video description steps
(Steps A:2 and B:2 ). These descriptors usually deliver df -dimensional feature vectors that
somehow encode the variation of the frame pixel values, regarding not only their spatial
configuration, but also their disposition along the video timeline (i.e., pixels are analyzed
as voxels). STIP [56] and Dense Trajectories [93] are typical representatives of such
descriptors. However, if space-temporal data are not parsimoniously used, they lead to a
high computational cost, in terms of both processing time and memory footprint. That
clashes with our goal of designing efficient solutions, specially regarding the intention of
deploying solutions on mobile devices. Hence, we introduce Temporal Robust Features
(TRoF), a novel time-aware video descriptor, which saves computational resources, yet
maintaining reasonable video description capability. In Section 3.2, we detail the TRoF
detector and descriptor.

3.1.2 Mid-level Stage

In the mid level, the goal is to combine the low-level features into global video represen-
tations, with intermediate complexity, which are closer to the target high-level sensitive
concept (e.g., violence, or pornography).

Firstly, for the sake of using the chosen mid-level representation — which we will
shortly detail as being Fisher Vectors — we reduce the df -dimensional low-level feature
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Figure 3.1: Three-level pipeline for efficient sensitive-video classification. On the left, the larger column
depicts the training pipeline execution, in which video labels are known in advance, and are used for
calculating the principal component analysis (PCA) transformation matrix (in Step A:3 ), generating the
GMM codebook (in Step A:4 ), and training the linear SVM classification model (in Step A:7 ). On the
right, the darker column depicts the test execution, in which the formerly learned models are used by
the system, for predicting the class of arbitrary videos. This pipeline efficiently incorporates temporal
information in the low and mid levels, by means of (i) local space-temporal descriptors (Steps A:2 and
B:2 ), and (ii) entire-footage mid-level feature pooling (Steps A:6, and B:5 ), respectively.
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vectors to pf ≤ df dimensions, with Principal Component Analysis (PCA). As pointed
out by Sánchez et al. [79], the PCA dimensionality reduction is key to make the Fisher
Vectors strategy work. That is related to Steps A:3 and B:3, in the pipeline. More specif-
ically, regarding Step A:3 — in the particular case of training operation — we obtain the
eigenvectors and the eigenvalues of the covariance matrix that is calculated over a random
sampling of the low-level training feature space, for further test use. Notwithstanding, in
order to provide a more content-aware strategy, we randomly select kp low-level descrip-
tions, with half of them coming from the positive training samples, and the other half
coming from the negative ones.

In the sequence, as we want to benefit from breakthrough mid-level representations
in the literature, we recommend the establishment of Fisher Vectors — one of the best
mid-level representations in the literature of Computer Vision problems [21, 79] — for
coding the video content with intermediate complexity (Steps A:5 and B:4, in Figure 3.1).
Roughly speaking, Fisher Vectors encode the average first- and second-order differences
between the low-level descriptions, and the distributions of a GMM-based codebook [71].

Therefore, prior to the encoding step — and exclusive to the training operation — a
GMM with cgmm distributions is estimated through an EM algorithm, whose execution
starts from random sampling features from the low-level PCA-reduced training feature
space. At this point, similar to the PCA-sampling, we randomly select kc PCA-reduced
descriptions, with half of them coming from the positive training samples, and the other
half coming from the negative ones. Such process is depicted in Step A:4, in which only
some descriptions are used to generate the GMM codebook.

Once the coding step is concluded, each PCA-reduced low-level description is converted
to a Fisher Vector with size 2×pf ×cgmm, by definition [71]. For generating the final mid-
level global video representations, we sum — for each video — all the Fisher Vectors along
the time dimension (which is equivalent to establishing a single bag for the entire video,
as explained in Section 2.1.2). As a result, each target video is represented by a single
Fisher Vector, which is normalized by means of a 0.5-power normalization, followed by an
ℓ2-normalization, as recommended in [71]. By working with this reduced representation,
we expect to alleviate computational costs, besides incorporating temporal information
in the mid-level stage of the process. Such pooling step is represented through Steps A:6
and B:5, in Figure 3.1.

3.1.3 High-level Stage

In the high level, many machine-learning algorithms can be used to infer a prediction func-
tion, for assigning labels to arbitrary videos (e.g., porn vs. non-porn, or violent vs. non-
violent content). At this point, depicted by Steps A:7 and B:6 in Figure 3.1, we follow
the literature and apply SVM (as explained in Section 2.1.3). We use a linear SVM, since
it is well known that non-linear kernels do not improve classification performances for
Fisher Vector representations [71]. In addition, a linear classifier is also of interest due to
its recognized faster performance, when compared to non-linear ones.
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Table 3.1: Parameters of the proposed sensitive-video classification pipeline.

Parameter Meaning

fr Resolution, in pixels, to which the video frames are reduced.

pf Dimensionality of the low-level descriptions, after PCA reduction.

kp Quantity of descriptions sampled for PCA transformation calculation.

kc Quantity of PCA-reduced descriptions sampled for GMM estimation.

cgmm Quantity of GMM-codebook component Gaussians.

3.1.4 Parametrization Summary

The pipeline depicted in Figure 3.1 suggests the combined use of TRoF, PCA, GMM,
Fisher Vectors, and a linear SVM for the final decision making. Nevertheless, it is note-
worthy that these techniques can be replaced by alternative solutions, depending upon the
application and the target system tradeoff between effectiveness and efficiency. Table 3.1
summarizes the pipeline parameters.

3.2 Temporal Robust Features (TRoF)

Local space-temporal features constitute a successful low-level representation for general
action recognition [56, 93]. Nevertheless, one important factor that prevents their use in
real-time applications is their high computational cost, regarding both processing time
and memory footprint.

To solve this problem, we propose a fast yet-space-temporal alternative that can be
implemented in limited hardware, such as mobile devices, and handheld video players.
To deal with the memory-usage issue, we introduce a sparse strategy, which detects an
optimized amount of space-temporal interest points, while maintaining high accuracy to
the sensitive-content classification task. For that, we investigated what type of hints we
could observe in a video, and we singled out the motion information. To deal with the
processing-time issue, we focus on employing fast image representations and manipula-
tions, such as integral images, and box filters.

Therefore, (i) we custom-tailor a detector for finding relevant motion in videos, and
(ii) we design a novel space-temporal interest point descriptor to represent such motion,
leading to what we call Temporal Robust Features (TRoF). In the following, we give
more details about TRoF. Section 3.2.1 introduces the TRoF detection method, while
Section 3.2.2 explains its description approach. Finally, in Section 3.2.3, we demonstrate
the TRoF detection capabilities, by means of synthetic test videos.
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3.2.1 TRoF Detector

The TRoF detector is directly inspired by the still-image Speeded-Up Robust Features
(SURF) detector [11], which is very fast. It relies on three major extensions of the original
method, to use the video space-time: the employment of four-variable Hessian matrices,
three-dimensional box filters, and the concept of integral video. In the following, we
explain each one of these expansions.

Four-Variable Hessian Matrix

The original SURF detector [11] identifies interesting visual local structures (a.k.a., blobs)
in an image, by means of determinants of Hessian matrices, that are calculated at different
locations onto the image surface, with varied scales.

Every Hessian matrix H(x, y, σ) is a function of the location x(x, y) and the scale σ.
As pointed out by Bay et. al [11], the Hessian matrices with the highest determinants are
the ones that share a location x(x, y) and present a scale σ that fits well to the size of an
occurring blob. Hence, the selection of the location and the scale of interesting blobs is
done by taking the candidate points and scales whose Hessian determinants are above a
given threshold.

To find the candidate locations, the best effort must look at every pixel of the image. To
tackle different scales, Bay et al. [11] suggest dividing the scale space into a list of octaves.
Each octave encompasses a scaling factor that is half the scaling factor of the next octave,
and they are subdivided into a constant number of four inner scale layers. Given that
various Hessian matrices with different scales are calculated at a given candidate location,
a non-maximum suppression is applied both spatially and over the neighboring scales, to
select those with the highest determinants. Each selected Hessian thus leads to a detected
blob.

Willems et al. [94] propose a straightforward extension of such mechanism to the case
of video, by adding the time dimension to the Hessian matrices, and using separated scales
for space (σs) and for time (σt), i.e., the original H(x, y, σ) becomes H(x, y, t, σs, σt). With
that, they expect the Hessian matrices with the highest determinants to coincide with
interesting space-temporal phenomena, within the video space-time. Due to the presence
of five variables, the amount of calculable Hessian values may be large, depending on the
video resolution, quantity of frames, and number of considered scales while inspecting
the scale search space. Moreover, Willems et al. [94] suggest inspecting the spatial-
and the temporal-scale search spaces separately. Hence, they propose the use of os five-
layered spatial scale octaves, and ot five-layered temporal scale octaves. Even though they
give neither clues on the actual values used for the candidate standard deviations, nor
how these values may be combined1, we can stipulate that they must compute at most
os × 5× ot × 5 Hessian values, for every voxel.

In a similar fashion, we also extend the Hessian matrices, but with a different for-
mulation, which is fundamental for real-time operation. In Equation 3.1, we express
the content of a four-variable space-temporal Hessian matrix H(x, y, t, σst), such as we

1Source codes and executables are no longer available and, due to a lack of details in Willems et al.’s
paper [94], we could not reproduce their method, making direct comparisons impossible.
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Table 3.2: Four initial space-temporal octaves for the TRoF detector. The Increase Factor
(IF) expresses the inter-layer scale increase. Values are measured in pixels.

Octave Scales IF

1 9× 9× 9 15× 15× 15 21× 21× 21 27× 27× 27 6

2 15× 15× 15 27× 27× 27 39× 39× 39 51× 51× 51 12

3 27× 27× 27 51× 51× 51 75× 75× 75 99× 99× 99 24

4 51× 51× 51 99× 99× 99 147× 147× 147 195× 195× 195 48

are adopting in this work. Within it, Lxx(x, y, t, σst) is the convolution of the Gaussian
second-order derivative ∂2G(x, y, t, σst)/∂xx with the voxel x(x, y, t) of the target video.
Similarly, Lxy(x, y, t, σst) refers to the convolution of ∂2G(x, y, t, σdt)/∂xy with the voxel
x(x, y, t), and so forth for Lxt, Lyt, Lyy, and Ltt.

H(x, y, t, σst) =

Lxx(x, y, t, σst) Lxy(x, y, t, σst) Lxt(x, y, t, σst)

Lxy(x, y, t, σst) Lyy(x, y, t, σst) Lyt(x, y, t, σst)

Lxt(x, y, t, σst) Lyt(x, y, t, σst) Ltt(x, y, t, σst)

 . (3.1)

As one might observe, we propose using a single standard deviation σst for both
space and time. At this point, differently from Willems et al. [94], and for a matter of
simplification, we adopt a joint strategy that — as a relaxation — lets us variate the scale
of the detectable blobs faster and closer to the former proposition of Bay et al. [11]. We
thus apply o four-layered space-temporal scale octaves (our first detection parameter), of
increasing Gaussian standard deviations with dual nature (spatial and temporal). As a
result, it becomes necessary to compute only o × 4 Hessian values, for every candidate
voxel (less than the os × 5× ot × 5 values from Willems et al. [94]).

To support such significant scale search space reduction, we extend the four-layered
octaves that were settled by Bay et al. [11] — by complementing their layers with temporal
standard deviations — and we keep the scale-increasing policies, this time changing spatial
and temporal scales simultaneously. For instance, the first space-temporal octave starts
with a scale of 9 × 9 × 9 voxels, and it presents an inter-layer increase of six voxels, for
both space and for time. The resulting space-temporal octave thus comprises four scales,
with 9× 9× 9, 15× 15× 15, 21× 21× 21, and 27× 27× 27 voxels, respectively. Table 3.2
details the proposed scales for four consecutive space-temporal octaves.

At first glance, the employment of a joint scale σst may sound counterintuitive, given
the distinct nature of space and time. However, preliminary experiments revealed that,
besides the advantage of enabling real-time video description, thanks to the scale-space
simplification, such strategy works on par with scale-separated solutions, in the case of
detecting inappropriate content. That happens because of the nature of the problem that
we intend to solve. While Willems et al. [94] aimed at action recognition, a duty that
is fundamentally of specialization nature, we are interested in violence classification, a
generalization task that does not require a precise detection of repeatable interest points.
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Figure 3.2: A visualization of the derivative filters ∂2G(x, σ)/∂xx, and their approxima-
tions. (a) The original two-dimensional filter, with its discretized and cropped versions.
(b) The respective three-dimensional versions. The rightmost cuboid filter is one of the
six filters used by the TRoF detector to support the calculation of Hessian matrices.

Similar to the still-image case, once all the necessary Hessian values are calculated,
a non-maximum suppression strategy must be performed for obtaining only the extreme
values within a four-dimensional neighborhood, considering the immediate Hessian neigh-
bors along the x-, y-, t-, and σst-axis directions. After the selection of an extremum, we
use the variation of the Hessian values that are within the suppression neighborhood, to
interpolate the x, y, t, σst values of the detected blob, with sub-voxel accuracy.

Finally, as it is impractical to consider every voxel of the video space-time as a can-
didate — for every scale combination — we propose to use one detection parameters s,
which defines the initial sampling step in both spatial and temporal directions, for select-
ing the points where to calculate the Hessian values. We also recommend to double that
step at every new octave, due to the property of an octave encompassing a scaling factor
of two, when compared to the previous one. On the occasion of selecting values for such
parameter, one must consider that larger values of s result in a faster detection process,
at the cost of reducing the accuracy in the detection of the position and the scale of the
interest points.

Three-Dimensional Box Filters

To quickly compute the various Hessian determinants, the original SURF method ap-
proximates the inherent two-dimensional Gaussian second-order derivatives by proper
box filters, which can be readily convolved with the integral image of the target image.

Figure 3.2(a) depicts the discretized version of the Gaussian second-order derivative
∂2G(x, y, σ)/∂xx, with σ = 1.2, projected onto a 9 × 9 image segment, and its corre-
spondent original two-dimensional SURF cropped filter, that constitutes the actual box
filter used to support the calculation of the Hessian determinant. Similarly, Figure 3.3(a)
shows the discretized version of ∂2G(x, y, σ)/∂xy, and its cropped counterpart.

In the case of TRoF, we have four-variable Hessian matrices (please refer to Equa-
tion 3.1), hence the related Gaussian second-order derivatives are three-dimensional
(spreading across the x, y, and t directions of the video space-time), with space-temporal
scale σst in all directions. We approximate these derivatives with cuboid filters.

Figures 3.2(b) and 3.3(b) show two of the six Gaussian filters, in both discretized and
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Figure 3.3: A visualization of the derivative filters ∂2G(x, σ)/∂xy, and their approxima-
tions. (a) The original two-dimensional filter, with its discretized and cropped versions.
(b) The respective three-dimensional versions. The rightmost cuboid filter is one of the
six filters used by the TRoF detector to support the calculation of Hessian matrices.

cuboid cropped versions. The other remaining four cuboid filters can be easily deduced
by simply applying the proper rotations. The 9 × 9 × 9 filters represent approximations
of Gaussians with σst = 1.2.

In all elements of Figures 3.2 and 3.3, Gaussian filters are shown as pixel-discretized
heat maps, whereby red zones refer to the higher values, in opposition to the blue parts
which represent the smaller ones. Yellow and green zones are in the middle, with yellow
closer to red, and green closer to blue. Cropped box filters, in turn, are approximations,
with values explicitly shown on the images. As adopted in [11], gray positions have zero
value, while white areas are positive, and black are negative.

Integral Video

The original SURF detector relies on integral images [27] to quickly perform image con-
volutions. In the case of TRoF, which operates within the video space-time, we must
extend the concept of an integral image to the idea of an integral video, by considering
three dimensions rather than two.

Equation 3.2 states the value of an integral video VΣ(x) at a space-temporal location
x(x, y, t), as suggested by Willems et al. [94]. It is given by the sum of all pixel values
belonging to the video V , that rely on a rectangular cuboid region formed by x and the
video origin.

VΣ(x(x, y, t)) =

i≤x∑
i=0

j≤y∑
j=0

k≤t∑
k=0

(i, j, k). (3.2)

Once the integral video is computed, it only takes eight accesses and seven operations
to calculate the sum of the pixel values inside any rectangular cuboid region, independently
of its size. For instance, the value V of the volume that is represented in gray in Figure 3.4
is given by Equation 3.3.

V = (A+ C)− (B +D)− (A′ + C ′) + (B′ +D′). (3.3)
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Figure 3.4: Integral video representation. The outer box represents the video space-time,
with the x axis associated to the width, the y axis to the height, and the t axis to the
video duration. The inner gray box represents the cuboid region, which is calculated by
Equation 3.3, as suggested by Willems et al. [94]

Table 3.3: Parameters of the TRoF detector. Parameter s is measured in pixels. The
remaining parameters refer to scalar quantities.

Variable Meaning

o Quantity of analyzed space-temporal scale octaves.

s Initial video space-time sampling step.

c Quantity of frames within each analyzed integral video.

b Quantity of extracted interest blobs per integral video.

With the integral video technique, we can convolve box filters of any scale with the
video space-time, in constant time. Nevertheless, one implementation issue remains, re-
garding the calculation of the integral video. For streams with long duration and high
resolution, the sum of pixel values may lead to numerical overflow, besides presenting
large-memory footprint. To avoid this, we split the video stream and compute the in-
tegral video at every c frames (our third detection parameter). A smaller c results in a
smaller amount of memory needed to store an integral video. However, if it considers
only a few video frames, it may segment the motion information and, therefore, damage
it with a higher probability.

Finally, given that video streams may be very assorted — especially in terms of camera
quality, camera position, and illumination conditions — we cannot find a single Hessian
threshold to discard irrelevant blobs, that works for all the cases. Thus, to proceed in a
less ad-hoc direction, we select the b most relevant blobs within each integral video, after
sorting the candidate interest points according to their Hessian values. Hence, we do not
need a threshold to identify relevant space-time phenomena, we just take the b strongest
ones (fourth and last TRoF parameter).

Table 3.3 summarizes the four parameters we have designed for the TRoF detector.

3.2.2 TRoF Descriptor

The former detection step delivers interest points within the video space-time, that are in-
dividually characterized by a three-dimensional position P (x, y, t), plus a space-temporal
scale σst. The next step refers to the description process to represent these elements.
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Figure 3.5: SURF-based TRoF described blob planes. The solid gray circles are con-
ventional SURF blobs, which are all centered at position P (x, y, t), and present a space-
temporal scale of 2σst. P and σst come from a formerly detected interest point. (a) SURF
blob that is projected onto the [x, y] plane. (b) SURF blob that is projected onto the [x, t]
plane. (c) SURF blob that is projected onto the [y, t] plane. (d) Resulting space-temporal
structure, which is formed by the union of the three SURF blobs.

At this point, our goal is to perform an efficient and effective time-aware description
of the previously detected space-temporal TRoF blobs, with low-memory footprint. With
respect to efficiency, we take for description only a small amount of the blob voxels, yet
considering their space-temporal disposition. For that, we describe only the voxels that
are projected onto three orthogonal planes of interest: the blob-centralized spatial [x, y]-
plane, and the blob-centralized temporal [x, t]- and [y, t]-planes. As for effectiveness, we
suggest the use of SURF [11] descriptor to properly capture the variation of the values
of the blob voxels, but other effective image descriptors (e.g., Histograms of Oriented
Gradients — HOG [30]) can alternatively be used as well.

Figures 3.5(a-c) depict each one of the three flat SURF blobs, in the form of solid gray
circles, that we propose to describe within a target TRoF blob. Figure 3.5(d) depicts
the structural union of these SURF blobs. The resulting structure is inscribed inside a
space-temporal cuboid, expressed in black dashed lines. Such cuboid is supposed to be
linked to a formerly detected interest point: it is centered in the position P (x, y, t) of such
point, and has a space-temporal scale of 2× σst.

As previously mentioned, alternatively, each plane of interest can be described by a
HOG block, divided — for instance — into 4 × 4 inner cells. Fig. 3.6(a-c) depict each
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Figure 3.6: HOG-based TRoF-described blob planes. The solid gray rectangles are HOG
description blocks, which are all centered at the position P (x, y, t), and present a space-
temporal scale of 2σst. Each HOG block is divided into 4 × 4 inner cells, which are
represented by internal dashed rectangles. P and σst come from a formerly detected
interest point. (a) HOG block that is projected onto the [x, y] plane. (b) HOG block that
is projected onto the [x, t] plane. (c) HOG block that is projected onto the [y, t] plane.
(d) Resulting space-temporal structure, which is formed by the union of the three HOG
blocks.

one of these HOG blocks, in the form of solid gray rectangles. As one might observe,
each rectangle is properly divided by 4 × 4 dashed subrectangles, which represent the
HOG inner cells. Fig. 3.5(d) depicts the structural union of these three HOG blocks. For
a low-memory footprint, we can limit the number of gradient histogram bins that are
calculated in each HOG cell to four. Thus, each HOG block shall deliver four values for
each one of its 4 × 4 inner cells, leading to a total of 64 description values, in a similar
fashion to the 64-dimensional SURF blobs.

With the intent to register eventual correlations among the three flat SURF (or even-
tually HOG) blobs, that could be helpful to distinguish sensitive and non-sensitive ma-
terial, we propose to generate the final TRoF feature vector by concatenating the three
64-dimensional blob descriptions, in the following order: [x, y]-, [x, t]-, and [y, t]-plane.
Thereby, as a practical result, the TRoF descriptor outputs a set of 192-dimensional
feature vectors, for every target video stream or particular video snippet of interest.

For the sake of illustration, Figures 3.7(a-c) depict the visual content of the voxels that
are described in each one of the three orthogonal planes of an eventually detected TRoF
blob. Figure 3.7(a) contains the voxels belonging to the [xy]-plane, which — by being
purely spatial — is the only one that is visually intelligible to humans. Figure 3.7(b),
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(a) (b) (c)

Figure 3.7: Visual representation of the voxels described in a sample TRoF blob. (a) Vox-
els described in the purely spatial [xy]-plane. (b) Voxels described in the space-temporal
[xt]-plane. (c) Voxels described in the space-temporal [yt]-plane. All three images are
individually described with a SURF [11] (or alternatively HOG [30]) descriptor.

Table 3.4: Synthetic videos created to demonstrate the TRoF detection capabilities. The
videos depict moving particles at different scales, which perform basic trajectories (e.g.,
vertical, horizontal, diagonal, zig-zag), along with static elements.

Video Content Depiction

horizontal Two different-size circles that move independently and horizontally. Figure 3.8

vertical Two different-size circles that move independently and vertically. Figure 3.9

diagonal
Two different-size circles, and two star-shape objects, separated by a
diagonal static line. The circles move independently over the line, while
the stars are static.

Figure 3.10

zig-zag One star-shape object that moves in varied directions. Figure 3.11

in turn, contains the voxels belonging to the [xt]-plane, while Figure 3.7(c) contains the
voxels described in the [yt]-plane. We consider only these three images for applying a
SURF (or alternatively HOG) descriptor.

3.2.3 TRoF Detection Capability

In order to visualize the quality of the TRoF detection process, we created four synthetic
videos that depict moving particles at different scales, performing basic trajectories (e.g.,
vertical, horizontal, diagonal, and zig-zag), along with static elements. In Table 3.4, we
describe the content of these videos, while in Figures 3.8–3.11, we depict the TRoF interest
points that were detected along four frames of each one of these videos.

As one might observe, within these videos, the white circles, line, and stars correspond
to the original video content, prior to the detection process. The colored circumferences,
in turn, refer to the detected space-temporal blobs. As expected, the TRoF detector pays
more attention to the moving objects, and describes their space-temporal neighborhood
with scale invariance.
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(a) frame 1001 (b) frame 1004 (c) frame 1008 (d) frame 1016

Figure 3.8: TRoF blob detection on four frames sampled from the horizontal video. The
video depicts two white circles that have distinct scales and move horizontally. Colored
circumferences refer to the detected space-temporal blobs.

(a) frame 969 (b) frame 977 (c) frame 986 (d) frame 1003

Figure 3.9: TRoF blob detection on four frames sampled from the vertical video. The
video depicts two white circles that have distinct scales and move vertically. Colored
circumferences refer to the detected space-temporal blobs.

(a) frame 746 (b) frame 750 (c) frame 758 (d) frame 768

Figure 3.10: TRoF blob detection on four frames sampled from the diagonal video. The
video depicts two white circles that have distinct scales and move diagonally. All other
white elements are static. Colored circumferences refer to the detected space-temporal
blobs.

(a) frame 523 (b) frame 525 (c) frame 528 (d) frame 532

Figure 3.11: TRoF blob detection on four frames sampled from the zig-zag video. The
video depicts one star-shape white object that moves in varied directions. Colored cir-
cumferences refer to the detected space-temporal blobs.

3.3 Final Remarks

The application scenarios of sensitive-video classification often require the analysis of
myriad motion pictures (revealing a big-data nature), which are easily shared over the In-
ternet, and cheaply disclosed by ubiquitous mobile devices (attesting an increasingly high
data pervasiveness). Furthermore, sensitive concepts (such as violence, or pornography)
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are usually subjective; in most cases, there is not a universal consensus on what is inap-
propriate, and in which situations. To make things harder, there are situations in which
the detection of sensitive content is urgent. That happens, for instance, in surveillance
scenarios, in which the fast identification of violent acts may be determinant for saving
lives, or in Forensic scenarios, in which the fast identification of child pornography, among
millions of files, may allow catching red-handed criminals.

For those reasons, computer-aided sensitive-video classification is a challenging and
still open problem. Increasing effectiveness is always a goal; for that, we bet on using time-
aware strategies, since it has long been proven that space-temporal approaches improve
the final system video classification accuracy [83, 14, 90, 84]. For dealing with the big-data
and urgency aspects of sensitive-video classification, we focus on designing fast solutions.
For dealing with the pervasiveness aspect, in turn, we focus on designing solutions that
present a low-memory footprint; such solutions are more suited to run locally, on mobile
devices, thus benefiting from their ubiquity. Lastly, for mitigating the target-concept
subjectivity, we suggest designing more generalizable and concept-independent solutions,
by means of BoVW-based approaches.

In this vein, in this chapter, we presented an end-to-end BoVW-based time-aware
pipeline for sensitive-video classification, whose internal components were selected with
the aim of providing small processing time, and low-memory footprint. The presented
approach is of general purpose, in the sense that it can be easily adapted to other binary
classification (positive vs. negative) sensitive content problems (e.g., violence, pornogra-
phy, gore scenes, child abuse, etc.). In addition, the efficiency gains strongly rely upon
the low-level video description, thanks to the use of TRoF — a novel space-temporal
interest point detector, and video descriptor — which was also introduced in this chapter.
Tables 3.1 and 3.3 summarize the parameters of the pipeline, and of TRoF, respectively.

In the next two chapters, we validate the pipeline and the TRoF video descriptor, for
both pornography (in Chapter 4) and violence (in Chapter 5) sensitive concepts.





Chapter 4

Pornography Classification:
Experiments

In this chapter, we validate the BoVW- and TRoF-based sensitive-video classification
pipeline that was introduced in Chapter 3, for the particular case of pornography detec-
tion. We compare the pipeline to commercial pornography detection solutions, and to
other BoVW-based solutions that rely upon either a well-established still-image descrip-
tor (namely, SURF [11]), or state-of-the-art space-temporal video descriptors (namely
STIP [57], and Dense Trajectories [93]).

For that, in Section 4.1, we explain the adopted experimental setup, in terms of
dataset, experimental protocol, metrics, available commercial solutions, BoVW-based
parametrization, and implementation details. In the sequence, in Section 4.2, we report
the experimental results, while in Section 4.3, we present some final remarks.

4.1 Experimental Setup

As explained in Section 2.2, previous work in the pornography classification literature
presented limited validation, with no standardized datasets or metrics, except for the
published methods in [19, 18, 8, 84, 90], which used the Pornography-800 dataset [8],
with 800 videos. Hence, aiming at providing a larger standardized validation benchmark,
we augmented that dataset to 2,000 videos, of which 1,000 are pornographic, and 1,000
are non-pornographic. In Section 4.1.1, we introduce this new dataset. Afterwards, in
Section 4.1.2, we explain the experimental protocol and the metrics we use to evaluate
the results, while in Section 4.1.3, we present the third-party solutions we compare to
the proposed pipeline. Next, in Section 4.1.4, we detail the BoVW-based experimented
solutions, which follow the sensitive-video classification pipeline that was introduced in
Chapter 3.

4.1.1 Pornography-2K Dataset

The Pornography-2K dataset is an extended version of the Pornography-800 dataset,
originally proposed in [8]. The new dataset — introduced in this work — comprises

62
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Frames sampled from the Pornography-2K dataset. On the top row, we show
representative sensitive content, including pornographic cartoons. The black censor boxes
were added by us, in the understanding that this text can reach a broad audience, includ-
ing underage readers; they are not present in the original material. On the bottom row,
we show non-pornographic content, emphasizing examples with non-sexual skin exposure.
We expect skin-detector-based solutions to fail in labeling samples (c-d), (f-h). In (c-d),
we do not have live-action skin, despite of having pornographic material. In (f-h), we
have non-pornographic cases with plenty of body exposure.

nearly 140 hours of 1,000 pornographic, and 1,000 non-pornographic videos, which vary
from six seconds to 33 minutes.1

Concerning the acquisition of pornographic material, unlike Pornography-800 [8], we
did not restrict ourselves to pornography-specialized websites. Instead, we also explored
general-public and general-purpose video networks2, in which it was surprisingly easy to
find pornographic content. As a result, the new Pornography-2K dataset is very assorted,
including both professional and amateur content. Moreover, it depicts several genres of
pornography, from cartoon to live action, with diverse behavior and ethnicity.

With respect to the non-pornographic content, we proceeded similar to Avila et al. [7].
We collected easy samples, by randomly selecting files from the same general-purpose
video networks. Also, we collected difficult samples, by selecting the result of textual
queries containing words such as “wrestling”, “sumo”, “swimming”, “beach”, etc. (i.e.,
words associated to skin exposure). Figure 4.1 depicts some example frames from the
Pornography-2K dataset.

The Pornography-2K dataset is available free of charge to the scientific community,
but — due to the potential legal liabilities of distributing large quantities of porno-
graphic/copyrighted material — the request must be formal and a responsibility term
must be signed.

1This dataset is the result of a joint effort made by professors Anderson Rocha, Siome Goldenstein,
and Eduardo Valle, along with several other colleagues, namely Dr. Sandra Avila, Dr. Vanessa Testoni,
Mauricio Perez, Daniel Moraes, and the author of this thesis.

2YouTube (http://www.youtube.com), Vimeo (http://www.vimeo.com), and Vine (http://www.
vine.co)

http://www.youtube.com
http://www.vimeo.com
http://www.vine.co
http://www.vine.co
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4.1.2 Experimental Protocol and Metrics

In face of the 2,000-samples Pornography-2K dataset, and due to the very time- and
resource-consuming experiments, we apply a variation of the 5 × 2-fold cross-validation
protocol [38] for data folding and validation, with less folds, which we refer to as 3 × 2-
fold protocol. It consists of randomly splitting the dataset into two same-size class-
balanced folds, three times. In each time, training and test sets are switched, leading to
six independent experiments, for a given classifier. Additionally, we submit the exact same
six folds to each candidate classifier, allowing us to perform proper paired statistical tests
later on. In this work, we employ the non-parametric pairwise Wilcoxon signed-rank test
with Bonferroni’s correction [35], whenever it is convenient to compare different classifiers
with some statistical confidence.

For assessing the performance of the pornography classifiers, we report the normalized
accuracy rate (ACC), and the F2 measure (F2). Prior to explaining these metrics, we need
to define some basic concepts, namely true positives, false positives, true negatives, recall,
specificity, and precision. For the sake of analogy, consider the test dataset as a sample
space, whose videos are elements. Violent videos are positive elements, and non-violent
videos are negative elements. Let #positive be the quantity of positive elements, and
#negative be the quantity of negative ones.

True positives are the elements that a classifier labels as positive, and that are really
positive. Let #true_positive be the quantity of true positives, on the occasion of evaluat-
ing a classifier. False positives, on the contrary, are the elements that a classifier labels as
positive, but are negative. Let #false_positive be the quantity of false positives. True
negatives, in turn, are the elements that a classifier labels as negative, and that are really
negative. Let #true_negative be the quantity of true negatives.

Recall, also known as true positive rate (TPR), expresses how good is a classifier, in
identifying the positive elements of a sample space. It is given by Equation 4.1.

recall = TPR =
#true_positive

#positive
. (4.1)

Specificity, also known as true negative rate (TNR), expresses how good is a classifier,
in identifying the negative elements of a sample space. It is given by Equation 4.2.

specificity = TNR =
#true_negative

#negative
. (4.2)

Finally, precision expresses how many elements are truly relevant (e.g., positive),
among the ones that a classifier identifies as such. It is given by Equation 4.3.

precision =
#true_positive

#true_positive+#false_positive
. (4.3)

Now, we are ready to present classification accuracy (ACC) and F2 measure (F2). ACC
is the mean of TPR and TNR, as depicted in Equation 4.4. It tells us the hit rate of the
methods, regardless of the class labels. A higher accuracy indicates a higher capability of
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separating the target videos in pornographic and non-pornographic samples.

ACC = (TPR + TNR)/2. (4.4)

F2, in turn, is the weighted harmonic mean of recall and precision, which gives twice
more weight to recall than to precision, by means of a β = 2 parameter. Equation 4.5
depicts the original Fβ formula:

Fβ = (1 + β2)× precision× recall

β2 × precision+ recall
, (4.5)

in which we use β = 2. In doing so, F2 lets us pay more attention to the recall of the
solutions, rather than to their precision. This is useful because, in the case of pornography
filtering, false-negative answers are worse than the false-positive ones. It is less prejudi-
cial to wrongly deny the access to non-pornographic content, than to wrongly disclose
pornographic material. Hence, we can consider that a solution with higher F2 measure
is better, because it cares more about how many pornographic items are being selected
(recall), instead of how many selected items are truly pornographic (precision).

4.1.3 Third-party Pornography Classifiers

Despite finding a myriad of pornographic-content filters available on the Internet, only a
few solutions rely on visual data to classify pornographic content, and very few of them
are able to inspect video content. We thus selected the most recent ones, to evaluate their
classification performance in detecting unsuitable material: MediaDetective [86], Snitch
Plus [49], PornSeer Pro [97], and NuDetective [74].

MediaDetective and Snitch Plus are both off-the-shelf commercially available pro-
grams3. NuDetective, in turn, is not available to the general public, but can be acquired
by law enforcement agencies or for research purposes, with no costs. Finally, Porn Seer
Pro is freely available.

All of these systems rely on content-based analysis of images/videos. Nevertheless,
while MediaDetective, Snitch Plus and NuDetective apply skin-based detectors to identify
pornographic content, PornSeer Pro is based on the detection of specific features (e.g.,
breasts, genitalia, anuses, nipples, etc.).

Furthermore, for MediaDetective and Snitch Plus, the video files are rated according
to their potential (i.e., probability) for pornography. In those cases, we tag a video as
pornographic if its probability is equal or greater than 50%. NuDetective and PornSeer
Pro, on the other hand, assigns binary labels to the video: positive (i.e., the video is
pornographic) or negative (i.e., the video is non-pornographic).

Finally, MediaDetective and Snitch Plus have four predefined execution modes, which
differ mostly on the rigorousness of the skin detector. In our experiments, we opted for the
most rigorous execution mode. Regarding NuDetective and PornSeer Pro, we employed
their default settings.

3We have purchased MediaDetective v3.1 and Snitch Plus v3.1.
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4.1.4 BoVW-based Pornography Classifiers

The proposed video classification pipeline, introduced in Chapter 3, is evaluated through
different techniques. Specifically, we explore various methods of low-level local video
description. In this section, we first describe the BoVW-based experimental setup followed
by a brief detailing of the local descriptors we apply to our experiments.

In accordance with the pipeline that was presented in Chapter 3, we first pre-process
the dataset, by resizing the video frame resolution to 100 thousand pixels, keeping the
original aspect ratio (i.e., we use fr = 100, 000 pixels). For this task, we use a cubic
image interpolation.

In the sequence, regardless of the low-level descriptors (which are df -dimensional), we
apply PCA to reduce by half their dimensionality (i.e., we use pf =

df
2

), as it is done
in the literature [93, 79, 71]4 For the calculation of the PCA transformation (reference
eigenvalues and eigenvectors), we randomly sample 10 million descriptors from the training
set, with half of them coming from the negative set, and the other half coming from the
positive set (i.e., we use kp = 10, 000, 000). These descriptors are then aggregated into
an image/video-level signature.5

In order to make the comparisons fair, we use the same mid-level representation for
all evaluated techniques. Therefore, we follow the pipeline recommendation, and extract
Fisher Vectors [71], with the implementation provided by the VLFeat C++ API [92]. The
visual codebook is modeled with a GMM, whose parameters are estimated over 10 million
randomly sampled PCA-reduced descriptions (i.e., kc = 10, 000, 000, with half coming
from the positive training set, and half coming from the negative training set), by means
of VLFeat C++ API [92]. By default, we use 256 Gaussians, as suggested in [71] (i.e.,
cgmm = 256).

In the high level, classification is performed by SVM classifiers, using the LIBLINEAR
library [41]. We apply grid search to find the best c-SVM parameter, during training. In
Table 4.1, we summarize the values of the parameters that define the experimental setup.

Speeded-Up Robust Features (SURF)

To provide a controlled baseline for the space-temporal techniques, we extract SURF
descriptors [11], which operate over static images only, with the OpenCV C++ API [17].

Thereby, for the sake of processing time, we use the I-frames from the video footage,
which are extracted with the FFmpeg library [13]. Next, we discard 10% of the image
borders to remove possible watermarks. SURF descriptors are then extracted on a dense
spatial grid at five scales. Precisely, we use patch sizes of 24, 32, 48, 68 and 96 pixels,
with step sizes of 4, 6, 8, 11 and 16 pixels, respectively.

In the classification phase, the classifier opinion is asked for each individual frame,
and the final decision is reached by majority voting (baseline referred to as SURF-MJV).
It means that the temporal information is incorporated at the high-level stage only.

4For the sake of additional investigation, we report in Appendix A the impact of variating the amount
of PCA dimensionality reduction over the proposed TRoF-based solution. According to the results, we
verify that the classification accuracy is not overly sensitive to the exact number of PCA components,
even if the associated cumulative data variance is as low as 50%.

5For this task, and for the previous one (of resizing), we use the OpenCV C++ API [17].
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Table 4.1: Parameter values of the experimented pornographic video classification
pipeline. The dimensionality of low-level descriptions is given by df , and depends upon
the chosen video description technique.

Parameter Value Meaning

fr 100, 000 Resolution, in pixels, to which the video frames are reduced.

pf
df

2 Dimensionality of the low-level descriptions, after PCA reduction.

kp 10, 000, 000 Quantity of descriptions sampled for PCA transformation calculation.

kc 10, 000, 000 Quantity of PCA-reduced descriptions sampled for GMM estimation.

cgmm 256 Quantity of GMM-codebook component Gaussians.

We also propose adding temporal information at the mid-level stage (baseline referred
to as SURF-MLP), by pooling the mid-level features over the entire video.

With SURF, by definition, the low-level descriptions are 64-dimensional (i.e., df =

64). As a consequence, after the PCA reduction (with pf =
df
2

= 32), and con-
sidering cgmm = 256, the mid-level SURF-based Fisher Vectors are of length
2× pf × cgmm = 16, 384 dimensions.

Space-Time Interest Points (STIP)

STIP [57] was the first local descriptor designed for analyzing the video space-time.
Roughly speaking, the STIP detector [56] is an extension of the Harris corner detec-
tor, which adds a third dimension — the time — to the equations. The STIP descriptor
relies on Histograms of Oriented Gradients and Histograms of Optical Flow (a.k.a., HOG-
HOF descriptions), that are computed from three-dimensional video patches, distributed
along the neighborhood of the detected interest points.

For the experiments, we extract both sparse — i.e., 3D-Harris-detected (STIP) — and
dense STIP (DSTIP) descriptors, with the code of Laptev [57], using default values.

With STIP, the low-level descriptions are 162-dimensional (i.e., df = 162). As a
consequence, after the PCA reduction (with pf =

df
2
= 81), and considering cgmm = 256,

the mid-level STIP-based Fisher Vectors are of length 2×pf ×cgmm = 41, 472 dimensions.

Dense Trajectories (DTRACK)

Dense Trajectories represent the current state of the art in the field of time-aware local
descriptors. In general terms, the dense trajectories [93] describe movement by means of
coding the trajectories of interest points. It samples the interest points on a regular grid in
each video frame, and tracks them using an improved optical-flow algorithm. Therefore,
it describes such trajectories by the application of HOG-HOF descriptors, combined with
Motion Boundary Histograms (MBH).

To extract the dense trajectories from the video files, we use the code provided by Wang
et al. [93], with default values. It is worth to mention that, to the best of our knowledge,
dense trajectories have never been applied to the task of pornography classification.
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Table 4.2: Parameter values of the experimented TRoF detector. Parameter s is measured
in pixels. The remaining parameters regard quantities.

Variable Value Meaning

o 4 Quantity of analyzed space-temporal scale octaves.
s 4 Initial video space-time sampling step.
c 250 Quantity of frames within each analyzed integral video.
b 3, 000 Quantity of extracted interest blobs per integral video.

With DTRACK, the low-level descriptions are 426-dimensional (i.e., df = 426). As a
consequence, after the PCA reduction (with pf =

df
2
= 213), and considering cgmm = 256,

the mid-level DTRACK-based Fisher Vectors are of length 2 × pf × cgmm = 108, 800

dimensions.

Temporal Robust Features (TRoF)

Similar to STIP, we extract both sparse — i.e., Hessian-detected (TRoF) — and dense
TRoF (DTRoF) descriptors, with the support of SURF descriptors to represent the TRoF
blob content (please refer to Section 3.2).

In the sparse case, to apply the TRoF detector and obtain the three-dimensional blobs
of interest, we calculate the integral video at every 250 frames of the target video (i.e.,
c = 250). Thereafter, for each obtained integral video, to describe video fastly, we sample
one in every four video voxels, in all directions (i.e., s = 4), and apply four space-temporal
scale octaves (i.e., o = 4), to perform the Hessian calculations.

Finally, we extract 3,000 blobs at every 250 integral video frames (b = 3, 000). Prelim-
inary experimental results showed that 250 frames, four voxels, four octaves, and 3,000
blobs represent a good compromise between effectiveness and efficiency. In Table 4.2, we
summarize the chosen values for TRoF detector’s four parameters.

In the dense case, we sample the video space-time at a regular grid with three scales.
We use cubic patches with sizes of 24, 48, 96 pixels, and step sizes of 8, 16 and 32 pixels,
respectively, in all directions. It should be mentioned that, although we have proposed
the TRoF detector, we also consider a dense sampling strategy (DTRoF), in the interest
of a more complete comparison and exploratory analysis.

With TRoF, the low-level descriptions are 192-dimensional (i.e., df = 192). As a
consequence, after the PCA reduction (with pf =

df
2
= 96), and considering cgmm = 256,

the mid-level TRoF-based Fisher Vectors are of length 2×pf×cgmm = 49, 152 dimensions.
TRoF is currently implemented in C++, and relies upon the OpenCV C++ API [17].

4.2 Results

In Table 4.3, we present the results for pornographic video classification on the Pornogra-
phy-2K dataset. We report the normalized accuracy rate (ACC) and the F2 measure (F2),
both averaged over six folds. Additionally, we report the average true positive (TPR) and
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Table 4.3: Results of video classification on the Pornography-2K dataset. We report the
average performance on 3 × 2 folds. In all cases, the standard deviation is smaller than
0.1.

Solution TPR (%) TNR (%) ACC (%) F2 (%)

T
hi

rd
-p

ar
ty Snitch Plus [49]

sk
in

43.43 91.30 67.37 47.88
MediaDetective [86] 63.30 80.40 71.85 65.53
NuDetective [74] 59.70 85.50 72.60 62.94

PornSeer Pro [97] 74.10 84.10 79.10 75.61

B
oV

W
-b

as
ed

SURF-MJV [11]
st

at
ic 94.50 82.80 88.65 92.34

SURF-MLP [11] 91.30 91.73 91.52 91.38

STIP [56]

te
m

po
ra

l

92.77 94.80 93.78 93.14
DSTIP [56] 94.13 94.27 94.20 94.16
DTRACK [93] 95.37 96.20 95.78 95.52
TRoF 93.00 93.80 93.40 93.54
DTRoF 95.10 95.87 95.48 95.25

TPR: true positive — TNR: true negative rate — ACC: accuracy — F2: F2 measure

(a) (b) (c) (d)

Figure 4.2: Failure examples of the skin-detection-based solutions. Frames (a-d) were
sampled from four videos of the Pornography-2K dataset, in which the third-party so-
lutions fail, in opposition to the success of the BoVW-based approaches. In (a-b), we
present false positive examples. In (c-d), we present false negative examples. The black
censor boxes were added by us, in the understanding that this text can reach a broad
audience, including underage readers; they are not present in the original material.

average true negative (TNR) rates, to give the reader a broader view of the classification
results.

4.2.1 Third-Party Solutions

As one might observe in Table 4.3, the BoVW-based approaches remarkably outperform
the third-party solutions. Not surprisingly, the skin-detector-based systems cannot handle
the challenging videos (both pornographic and non-pornographic) of the Pornography-
2K dataset. Figure 4.2 depicts some frames that were sampled from four videos of the
Pornography-2K dataset, in which the skin-detection-based solutions fail, in opposition to
the success of the BoVW-based approaches. Figures 4.2 (a-b) depict false positive cases,
while Figures 4.2 (c-d) depict false negative cases.
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Table 4.4: Pairwise comparison between TRoF and the other approaches that are not
simultaneously dense and space-temporal. We report the statistical tests for all 3 × 2
folds, considering ACC, and using the paired Wilcoxon test with Bonferroni’s correction.

STIP SURF-MLP SURF-MJV
T

R
oF p-value 1.000 0.013 0.013

conclusion • ✔ ✔

• not statistically different ✔ TRoF is better

Table 4.5: Pairwise comparison between DTRoF and the other dense space-temporal
approaches. We report the statistical tests for all 3× 2 folds, considering ACC, and using
the paired Wilcoxon test with Bonferroni’s correction.

DTRACK DSTIP

D
T

R
oF p-value 1.000 0.045

conclusion • ✔

• not statistically different ✔ TRoF is better

The strength of BoVW-based techniques is further prominent when we compare the
baseline BoVW-based approach (SURF-MJV) to the best third-party solution (PornSeer
Pro). It provides an error reduction of over 45% and 68% with respect to ACC and F2,
respectively.

4.2.2 BoVW-Based Solutions

Among the BoVW-based solutions, the use of space-temporal local video descriptors lead
to more effective classifiers. It corroborates the assumption that motion information
carries relevant clues regarding the presence of pornography within a video stream, and
that being able to incorporate temporal information to the task of video description might
help to capture such motion details.

In Table 4.4, we present the statistical comparison between the sparse application of
TRoF (which is one contribution of this work), and each one of the following approaches:
SURF-MJV, SURF-MLP, and STIP. For the sake of this analysis, we left the better-
performing dense space-temporal approaches out. As expected, TRoF — which is space-
temporal — presents better ACC, with statistical difference and 95% of confidence, when
compared to the still-image approaches (SURF-MJV and SURF-MLP). In addition, TRoF
and STIP are not statistically different, in spite of TRoF being more efficient, as we report
in Section 4.2.3.

The use of dense space-temporal video description also leads to more effective classi-
fiers. For instance, the three best solutions (DSTIP, DTRACK, and DTRoF) rely upon
a dense description of the video space-time. In Table 4.5, we present the statistical com-
parison between the dense application of TRoF (DTRoF), and each one of the other two
experimented dense space-temporal approaches (DSTIP and DTRACK). As one might



CHAPTER 4. PORNOGRAPHY CLASSIFICATION: EXPERIMENTS 71

observe, DTRoF presents better ACC, with statistical difference and 95% of confidence,
when compared to DSTIP, while it is not statistically different from DTRACK, in spite
of being more efficient than both counterparts, simultaneously in terms of computational
time and memory footprint. Please refer to Section 4.2.3 for more details about efficiency.

4.2.3 Efficiency Results

Despite of the higher effectiveness, space-temporal and dense strategies often lead to in-
efficient classifiers, specially with respect to the processing time and memory footprint.
STIP, DSTIP, DTRACK, and the dense application of TRoF will certainly not run on mo-
bile devices and other hardware-limited platforms, at least with the mobile configurations
available in the market as of 2016.

Figure 4.3(a) depicts the correlation between the accuracy and the computational
time that is spent to perform an end-to-end classification, for each BoVW-based solution.
Given that we needed to conduct these experiments under the same controlled hardware
conditions, we have randomly selected three hours of video footage from the Pornography-
2K dataset, to assess the computational time spent for classification. All experiments were
conducted on a 64-bit Linux machine, powered by a 2-GHz 12-core Intel(R) Xeon(R)
processor (E5-2620), with 24 GB of RAM. Figure 4.3(b) correlates the F2 measure with
the computational time.

Likewise, Figure 4.3(c) shows the correlation between the accuracy and the quantity
of descriptors extracted from the entire Pornography-2K dataset, for each BoVW-based
solution. Figure 4.3(d), in turn, correlates the quantity of descriptors with the F2 measure.

At this point, one might argue that using less descriptions does not imply the use
of a more efficient description process. It happens because the descriptions do not code
the same visual phenomena and, as a consequence, they do not have the same size.
For instance, the baseline solutions rely on static 64-D SURF points, STIP on 162-D
descriptions, DTRACK on 426-D Dense Trajectories, and TRoF on 192-D low-level feature
vectors. Thus, using a large amount of a small description may be equivalent to using a
small amount of a large one.

Therefore, in order to evaluate the strategies in terms of memory footprint, we also
correlate the classification accuracy and the F2 measure with respect to the total disk
space that is spent to store the low-level feature vectors of the entire Pornography-2K
dataset. Figure 4.3(e) depicts the correlation between accuracy and disk usage, in a lin-
log chart, for a better representation. Figure 4.3(f) depicts the correlation between F2

measure and disk usage.
In all charts, the best solutions occur on the top left regions: they present high per-

formance, despite of spending less computational resources. In all the cases, the sparse
application of TRoF — in its Hessian-blobs-detected version — occupies such privileged
position.

In Figure 4.4, we detail the processing time spent by each BoVW-based solution, by
the occasion of performing an end-to-end classification (i.e., online operation only) of the
three hours of randomly chosen video footage. As one might observe, TRoF is the fastest
space-temporal descriptor, even in the case of being densely applied (DTRoF).
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(a) ACC × Processing time (b) F2 × Processing time

(c) ACC × Descriptions (d) F2 × Descriptions

(e) ACC × Disk usage (f) F2 × Disk usage

Figure 4.3: Performance of BoVW-based classifiers on the Pornography-2K dataset,
putting effectiveness (vertical axes) in perspective with efficiency (horizontal axes). On
the left, effectiveness refers to classification accuracy, while on the right, it refers to the
F2 measure. On the top row, efficiency regards computational time spent to classify over
three hours of video footage (same system for all methods). On the middle row, efficiency
concerns the number of descriptors extracted for the entire dataset. On the bottom row,
efficiency refer to (log scale) the disk storage space for the entire dataset. In all charts,
the best solutions are at the top-left corner.
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Figure 4.4: Breakdown of the processing time spent by each BoVW-based classifier.
The computational times refer to the amount of time used to classify over three hours of
randomly chosen video footage, under the same system. That time is divided among three
subtasks: low-level video description, PCA projection, and Fisher calculation. At the top
of each bar, the respective video processing rate, in frames per second (fps). Notice that
the sparse variant of TRoF is the only space-temporal solution able to provide speeds
compatible with real-time video processing.

In the particular case of the sparse TRoF, besides the advantage of counting on a
faster descriptor, the proposed detection process allows us to extract a minimum amount
of interest points, optimally centered at moving objects. As a consequence, the small
quantity of good descriptions directly reduces the processing time that is needed to project
data (through PCA), and to perform the calculation of Fisher Vectors. Hence, it presents
a video processing rate of almost 30 fps, indicating that it might be suitable for real-time
video analysis.

4.3 Final Remarks

Pornographic video classification is a hard problem, in which traditional methods often
employ still-image techniques: they label frames individually, often supported by skin
detectors, prior to a global decision. Frame-based approaches, however, ignore signifi-
cant cogent information brought by motion, leading to a reduction in their effectiveness
(in terms of accuracy and F2 measure). That justifies the use of space-temporal video
descriptors, whose most representative alternatives from the literature were evaluated in
this chapter.

Indeed, to the best of our knowledge, it was the first time that the dense application of
STIP [56] and Dense Trajectories [93] were evaluated to solve the problem of pornography
classification. Similarly, for the first time, the Fisher Vector representation was used as a
mid-level stage in pornographic content classifiers.

Experiments confirmed that the incorporation of space-temporal information leads to
more effective video-pornography classifiers, and also ratified that a dense low-level video
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description increases the system effectiveness (in terms of accuracy and F2 measure),
but at prohibitive reductions in efficiency (in terms of computational time and memory
footprint). Such drawback makes it impractical to apply dense strategies or other con-
ventional space-temporal approaches on hardware-limited mobile devices, such as tablets
and smartphones.

In such context, TRoF reveals itself as an interesting alternative for dealing with the
effectiveness vs. efficiency tradeoff, in spite of not being statistically different from the
more resource-consuming STIP alternative. Moreover, a dense application of TRoF is
also noteworthy: it performs with no statistical difference from the Dense Trajectories, in
spite of presenting three times less memory footprint, and being twice as faster.

Finally, the evaluation of the proposed sensitive-video classification pipeline took inter-
esting steps in the direction of advancing the state of the art in pornography classification.
The first is the acquisition of the Pornography-2K dataset, a new challenging benchmark,
with 140 hours of video footage. The second is the evaluation of third-party classifiers.
Among such solutions, we included two commercial programs, which are based upon skin
detectors. We verify, through experimentation, that they are far from being reliable, in
face of the task at hand.





Chapter 5

Violence Classification: Experiments

In this chapter, we validate the BoVW- and TRoF-based sensitive-video classification
pipeline that was introduced in Chapter 3, for the particular case of violence detection.
We analyze the pipeline performance in contrast to other BoVW-based solutions that rely
upon either a well-established still-image descriptor (namely HOG [30]), or space-temporal
video descriptor (namely STIP [57]), with the aim of verifying whether or not the proposed
solution is able to efficiently use video temporal information (concerning hypothesis H1 ).
Additionally, for the sake of investigation, we compare the proposed approach with the
standout works of Mironică et al. [63] (who currently report the best results over the
MediaEval 2013 VSD dataset [33]), and of Derbas and Quénot [36] (who officially took
first place in the MediaEval 2013 subjective violence classification competition [33]).

For that, in Section 5.1, we explain the adopted experimental setup, in terms of
dataset, experimental protocol, and metrics (which are inherited from the MediaEval
2013 VSD task [33]), in addition to BoVW-based parametrization, and implementation
details. Thereafter, in Section 5.2, we report the experimental results, while in Section 5.3,
we present some final remarks.

5.1 Experimental Setup

As explained in Section 2.3, in the last few years, progress in violence detection has been
quantified mainly due to the MediaEval VSD task [80, 34, 33], which provides a common
groundtruth and standard evaluation protocols to the scientific community. To benefit
from such advantages, we use the MediaEval benchmark for conducting the experiments.
Hence, in Section 5.1.1, we present some details of the MediaEval 2013 dataset [33],
which refers to the last VSD task edition that had evaluated violence classification (fur-
ther editions aimed at violence localization [80]). Next, in Section 5.1.2, we explain the
competition experimental protocol, and the metrics used to evaluate the results, while
in Section 5.1.3, we present the BoVW-based experimented solutions, which follow the
sensitive-video classification pipeline that was introduced in Chapter 3.

76



CHAPTER 5. VIOLENCE CLASSIFICATION: EXPERIMENTS 77

Table 5.1: MediaEval 2013 VSD dataset summary. The 25-title dataset is divided into an
18-title Training set, and a seven-title Test set. The competition provides annotations for
segmenting the titles into shots, which are individually labeled as violent (content that
one would not let an eight-year old child see) or non-violent. Nearly 20% of the shots are
violent.

Title #shots violent shots
(#) (%)

T
ra

in
in

g

01. Armageddon 3,562 466 13.08
02. Billy Elliot 1,236 66 5.33
03. Dead Poets Society 1,583 23 1.45
04. Eragon 1,663 453 27.23
05. Fight Club 2,335 516 22.09
06. Harry Potter V 1,891 329 17.39
07. I am Legend 1,547 497 32.12
08. Independence Day 2,652 640 24.13
09. Kill Bill 1,597 650 40.70
10. Leon 1,547 437 28.24
11. Midnight Express 1,677 239 14.25
12. Pirated of the Caribbean I 2,534 670 26.44
13. Reservoir Dogs 856 304 35.51
14. Saving Private Ryan 2,494 1195 47.91
15. The Bourne Identity 1,995 257 12.88
16. The Sixth Sense 963 53 5.50
17. The Wickerman 1,638 193 11.78
18. The Wizard of Oz 908 22 2.42

Total 32,678 7,010 21.45

T
es

t

01. Fantastic Four I 2,002 717 35.81
02. Fargo 1,061 256 24.12
03. Forrest Gump 1,418 238 16.78
04. Legally Blond 1,340 0 0.00
05. Pulp Fiction 1,686 496 29.41
06. The Godfather 1,893 198 10.45
07. The Pianist 1,845 371 20.10

Total 11,245 2,276 20.24

5.1.1 MediaEval 2013 Violent Scenes Detection Dataset

The MediaEval 2013 VSD dataset comprises 25 Hollywood movie titles of diverse genres,
from extremely violent, to musical. Shot1 segmentation is provided for all the movies —
including the ones belonging to the test set — as a part of the dataset annotation, and
the resulting segments are individually annotated as containing or lacking violent scenes,
which “one would not let an eight-year old child see” [33]. The shot annotation had been
carried out by seven human assessors, with varied ages and cultural backgrounds, and the
shot segmentation had been obtained through a proprietary software.

In Table 5.1, we summarize the content of the MediaEval 2013 VSD dataset. The
values were collected by [33]. Competitors and other interested people are supposed to
purchase the movie titles at their own expenses. The MediaEval initiative provides only
the annotations, which come separated into a training set, regarding 18 movies that are
segmented into 2,678 shots, and a test set, comprising seven movies that are segmented
into 11,245 shots. Approximately 20% of all shots are violent.

For the sake of illustration, Figure 5.1 depicts some violent frames from the MediaEval
2013 VSD dataset.

1A shot is a temporal sequence of frames that are captured in the same plane, by the same camera.



CHAPTER 5. VIOLENCE CLASSIFICATION: EXPERIMENTS 78

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Violent frames sampled from the MediaEval 2013 VSD dataset. All images
are copyrighted, and therefore belong to the respective movie studios.

5.1.2 Experimental Protocol and Metrics

The VSD task motivation is the development of systems that may help users choose
suitable titles for their children, by retrieving the most violent movie parts, for parental
preview [33]. As a consequence, competitors’ solutions are compared from the perspective
of retrieval: the highest performing systems are the ones that return the largest number
of violent shots, at the first positions of the top-k retrieved shots, properly ranked by
violence classification confidence.

For achieving that, the MediaEval initiative suggests using the Mean Average Precision
(MAP) at the 100 top ranked violent shots (MAP@100), as the official evaluation metric.
Equation 5.1 shows the mathematical formula of MAP@k:

MAP@k =
1

q

q∑
i=1

AP@k(i), (5.1)

where k is the quantity of shots within the rank of retrieved shots (k = 100), and q is the
quantity of system queries for obtaining ranked violent shot lists. In the VSD case, q = 7,
which is the number of titles within the test set (i.e., each query is related to retrieving
shots from a specific test movie title). AP@k(i), in turn, is the average precision of the
i-th query, when returning a k-shot ranked list, as it follows:

AP@k(i) =
1

k

k∑
j=1

precision(i, j), (5.2)

where precision(i, j) is the system precision when retrieving the top-j violent shots, re-
garding the i-th query.

Relying upon the MAP@100 metric, the MediaEval 2013 VSD task adopts a straight-
forward protocol. Participants must report results over the seven-title test dataset, with
a label (violent or non-violent) and a confidence classification score for each one the shots
that are defined in the annotations. Clearly, the test dataset must not be used in any
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Table 5.2: Parameter values of the experimented violent video classification pipeline. The
dimensionality of low-level descriptions is given by df , and depends upon the chosen video
description technique.

Parameter Value Meaning

fr 100, 000 Resolution, in pixels, to which the video frames are reduced.

pf
df

2 Dimensionality of the low-level descriptions, after PCA reduction.

kp 1, 000, 000 Quantity of descriptions sampled for PCA transformation calculation.

kc 1, 000, 000 Quantity of PCA-reduced descriptions sampled for GMM estimation.

cgmm 256 Quantity of GMM-codebook component Gaussians.

system training step. The best solutions are the ones that report the highest values of
MAP@100. For assessing the MAP@100, the MediaEval initiative provides a Perl script
for free, which we use in our experiments.

5.1.3 BoVW-based Violence Classifiers

Similar to the case of video pornography classification, we evaluate the proposed video
classification pipeline — for the particular case of violence — through different techniques.
Specifically, we explore various methods of low-level local video description. In this sec-
tion, we first describe the BoVW-based experimental setup, and we next provide a brief
detailing of the used local descriptors.

As explained in Chapter 3, we first preprocess the dataset, by resizing the video frame
resolution to 100 thousand pixels, keeping the original aspect ratio. In the sequence,
regardless of the low-level descriptors, we apply PCA to reduce by half their dimension-
ality. For the calculation of the PCA transformation, we randomly sample one million
descriptors from the training set, with half of them coming from the negative set, and
the other half coming from the positive set. These descriptors are then aggregated into a
video-level signature. For such tasks, we use the OpenCV C++ API [17].

To make the comparisons fair, we use the same mid-level representation for all eval-
uated techniques. Therefore, we follow the proposed pipeline, and extract Fisher Vec-
tors [71], with the implementation provided by the VLFeat C++ API [92]. The visual
codebook is modeled with a GMM, whose parameters are estimated over one million ran-
domly sampled PCA-reduced descriptions, with half coming from the positive training
set, and half coming from the negative training set), by means of VLFeat C++ API [92].
By default, we use 256 Gaussians, as suggested in [71] (i.e., cgmm = 256).

In the high level, classification is performed by SVM classifiers, using the LIBLINEAR
library [41]. We apply grid search to find the best c-SVM parameter, during training.

In Table 5.2, we summarize the values of the parameters that define the experimental
setup. They are slightly different from the pornographic case: for the sake of saving
training processing and experimentation time, we sample one million features from the
low-level description space (i.e., kp = kc = 1, 000, 000), in opposition to the ten million
pornographic samples.
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Histograms of Oriented Gradients (HOG)

To provide a controlled baseline for the use of TRoF, we extract HOG descriptions [30],
which operate over static images only, with the OpenCV C++ API [17]. Thereby, for
the sake of saving processing time, we use the I-frames from the video shots, which are
extracted with the FFmpeg library [13]. Next, we discard 10% of the image borders, to
remove possible watermarks. HOG descriptions are then extracted on a dense spatial
grid, at five scales. Precisely, we use patch sizes of 24, 32, 48, 68 and 96 pixels, with step
sizes of 4, 6, 8, 11 and 16 pixels, respectively.

Each patch is described by a single HOG block, which is divided into 4×4 HOG cells.
Each cell is described by eight bins, leading to 4 × 4 × 8 description values per patch.
Hence, the obtained HOG feature vectors are 128-dimensional.

In addition, we add temporal information at the pipeline mid-level stage, by pooling
the mid-level features over the entire video. Considering the 128 dimensions of HOG, allied
with the PCA reduction of pf = df/2 = 64, and cgmm = 256, the mid-level HOG-based
Fisher Vectors are of length 2× pf × cgmm = 32, 768 dimensions.

Space-Time Interest Points (STIP)

For the sake of saving experimental time and also based on our previous results for pornog-
raphy classification, we choose STIP [57] as the representative of well-established space-
temporal local descriptors, instead of Dense Trajectories [93], which are very time- and
memory-consuming.

For the experiments, we extract both sparse — i.e., 3D-Harris-detected (STIP) — and
dense STIP (DSTIP) descriptors, with the code provided by Laptev [57].

Considering that STIP descriptions are 162-dimensional (i.e., df = 162), after the PCA
reduction (with pf = df/2 = 81), and employing cgmm = 256, the mid-level STIP-based
Fisher Vectors are of length 2× pf × cgmm = 41, 472 dimensions.

Temporal Robust Features (TRoF)

In accordance with the chosen baseline static local descriptor (which is HOG), we employ
HOG descriptors to represent the TRoF blob content (please refer to Section 3.2).

For detecting the three-dimensional blobs of interest, with the TRoF detector, we use
the same configuration that is presented in Table 4.2, due to the reported good perfor-
mance, in face of the pornography classification problem (please refer to Section 4.2.2, for
details). We therefore calculate the integral video at every 250 frames of the target video
(i.e., c = 250). For each obtained integral video, to swiftly describe a video, we sample
one in every four video voxels, in all directions (i.e., s = 4), and apply four space-temporal
scale octaves (i.e., o = 4), to perform the Hessian calculations. Thereafter, we extract
3,000 blobs at every 250 integral video frames (b = 3, 000).

Finally, with TRoF, the low-level descriptions are 192-dimensional (i.e., df = 192),
regardless of relying upon SURF or HOG. As a consequence, after the PCA reduction
(with pf = df/2 = 96), and considering cgmm = 256, the mid-level TRoF-based Fisher
Vectors are of length 2× pf × cgmm = 49, 152 dimensions.
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Table 5.3: Results on the MediaEval 2013 VSD dataset. All MAP and MAP@100 values
were obtained with the competition evaluation tool [33].

Solution Modalities MAP@100 MAP

Mironică et al. [63] audio & video * 0.760
Derbas and Quénot [36] audio & video 0.690 0.673

DHOG video only 0.459 0.390
STIP video only 0.541 0.465
DSTIP video only 0.588 0.512
TRoF video only 0.508 0.460

∗Authors did not report MAP@100.

5.2 Results

In Table 5.3, we present the results for violence video classification on the MediaEval 2013
VSD dataset. We report the MAP@100 over the seven-title test dataset, in addition to
the MAP@{all shots} (referred to as MAP).

Although not our initial aim, we compare the pipeline results with the works of Miron-
ică et al. [63] (who report the best results over the MediaEval 2013 VSD dataset [33]),
and of Derbas and Quénot [36] (who took first place in the MediaEval 2013 subjective
violence classification competition [33], for the sake of investigation.

As explained in Section 2.3.3, Mironică et al. [63] give up using space-temporal features,
in the particular case of the MediaEval 2013 VSD dataset, due to the high computational
complexity, which makes such descriptors inefficient for large-scale collections. Instead,
they apply global still-image description (based on HOG and color histograms), along
with audio features (e.g., MFCC), which they claim being fast.

Derbas and Quénot [36], in turn, employ a combination of four descriptors, namely
MFCC (auditory), SIFT and color texture (still-image aimed), and STIP.

In opposition to these works, we limited the solutions to the use of a single modality
(either DHOG, STIP, DSTIP, or TRoF), in order to investigate how one may deal with the
effectiveness vs. efficiency tradeoff. Single modal solutions presented reasonable classifica-
tion effectiveness, with the dense space-temporal solution (DSTIP) presenting the highest
MAP@100 (0.588), as expected. In the same direction, the still-image approach (DHOG)
presented the worst results, confirming that the space-temporal information improves vi-
olence classification. TRoF, in turn, obtained a MAP@100 value of 0.508, however, it
presents the best performance, in terms of processing time and memory footprint, as we
shall demonstrate in the next section.

5.2.1 Efficiency Results

For investigating the required computational time, Fig. 5.2(a) depicts the correlation
between MAP@100 and the computational time spent to classify a selected portion of
30 minutes of video content, for each experimented classifier. Internal values indicate
the processing frame rate, in frames per second (fps). The highest the rate, the better
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TRoF DHOG STIP DSTIP

(a) MAP@100 × Processing time (b) MAP@100 × Disk usage

Figure 5.2: Performance of BoVW-based classifiers on the MediaEval 2013 VSD dataset,
putting effectiveness (vertical axes) in perspective with efficiency (horizontal axes). On
the left, efficiency refers to the computational time spent to classify 30 minutes of video
footage (same system for all methods). Internal values indicate the processing frame rate,
in frames per second (fps). The higher the rate, the better. On the right, efficiency refers
to the disk storage space for the seven-titles test dataset. Internal values indicate the
amount of generated description in megabytes per second of footage (MBps). The smaller
the amount, the better. In both charts, the best solutions are at the top-left corner.

the solution. As one might observe, TRoF leads to a rate of 12.5 fps, in spite of being
space-temporal.

Likewise, for evaluating the strategies in terms of memory footprint, we also corre-
late MAP@100 with respect to the total disk space that is spent to store the low-level
feature vectors of the seven-title test dataset, which comprises 15 hours of video footage.
Fig. 5.2(b) shows the correlation between MAP@100 and disk usage. Internal values in-
dicate the amount of generated description in megabytes per second of footage (MBps).
The smaller the amount, the better.

In all charts, the best solutions occur on the top left regions: they present higher
performance and consume less computational resources. In both cases, TRoF is near such
privileged region. All experiments were conducted on a 64-bit Linux machine, powered
by a 2-GHz 12-core Intel(R) Xeon(R) processor (E5-2620), with 24 GB of RAM.

In addition, although we do not have the proper time and disk usage measurements
of the work of Derbas and Quénot [36], we can still infer their performance from the
implemented STIP solution, because it is included in their adopted fusion strategy. STIP
can be seen as a lower-bound to the time and disk usage of such solution. With respect
to the work of Mironică et al. [63], even though they claim that their solution is fast, they
do not report any efficiency results concerning the MediaEval dataset.

Finally, the numbers of TRoF in face of the MediaEval 2013 VSD dataset are promis-
ing. It presents the same memory footprint of STIP, in spite of being four times as faster,
and presenting reasonable values of MAP@100.
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5.3 Final Remarks

Violent video classification is a problem that has gained attention from the scientific
community, due to its relevance. Specially in the last few years, progress in the field has
been quantified mainly due to the MediaEval VSD task [34, 33]. Among the proposed
solutions, the typical approach relies upon multimodal video characterization, with the
compulsory use of space-temporal descriptors as one of the employed modalities. That
happens because it has long been proven that space-temporal descriptors — such as STIP
and Dense Trajectories — improve the effectiveness of violence detectors.

In this vein, although the general perception in the literature dictates that space-
temporal techniques are normally computationally expensive and present a high-memory
footprint, the research on violence detection, in general, lacks proper performance evalu-
ation.

Regardless of that, the fast detection of violent content is important in surveillance
setups (in which, for instance, the real-time identification of violent events shall be deter-
minant for saving lives), and in forensic scenarios (in which the fast identification of violent
content among millions of files shall allow catching red-handed criminals). Moreover, if
automated violence detection is transparently performed in low-memory devices (such as
smartphones and tablets), it might ubiquitously protect audiences, without harming the
user experience.

In this context, in this work, we evaluated the use of a sensitive-video classification
approach (please refer Chapter 3), conceived for being not only effective, but also efficient,
in spite of relying upon space-temporal video description. That is possible mainly due
to the use of TRoF (please refer to Section 3.2), a novel and effective space-temporal
interest point detector and video descriptor, which is computationally fast and presents
low-memory footprint.

For filling the lack of performance evaluation, we report the performance of the pro-
posed solution in face of both pornography (in Chapter 4 ) and violence classification
problems. The results have shown that the TRoF usage allied with SURF yields a pro-
cessing frame rate capacity of almost 30 fps, which is ideal for real-time video description.
In addition, the alternative TRoF combination with HOG yields a processing frame rate
capacity of nearly 12 fps: four times faster than STIP, and more than five times faster
than Dense Trajectories.

The performance of TRoF is possible mainly due to two innovations. First, a four-
variable space-temporal Hessian matrix, which uses a space-temporal standard deviation
that is shared between space and time, for detecting the scale of interesting phenomena.
And second, a fast description of the detected space-temporal interest point, which yields
a compact description in ℜ192. As the shared space-temporal scale parameter is key for the
performance gain, one might wonder when it is interesting to apply it. In our experience,
we have learned that whenever we have a generalization problem (e.g., generalizing video
motion to more general concepts, such as pornography and violence) this representation is
appropriate. On the other hand, when we have a specialization problem (e.g., using video
motion for detecting specific actions, such as walking, running, jumping, etc.), possibly
an untangled representation for the space and time scales is more appealing.
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This chapter closes the first part of this work, and is related to hypothesis H1 (please
refer to Section 1.1), which states that it is possible to efficiently use video temporal
information for effective sensitive-content classification, by combining simplified space-
temporal video interest-point detection and description, with entire-footage representation
through a single feature vector. According to the presented results, we found strong
evidence that such hypothesis is confirmed.





Part II

Sensitive-Content Localization
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Chapter 6

From Many to One: Combining
Multimodalities

Sensitive-content localization is the search problem of finding sensitive scenes within a
video timeline. In other words, a system that performs sensitive-content localization
must return the instants a video stream starts and ends to display sensitive content.

In this chapter, we introduce a high-level multimodal fusion approach to sensitive-
video localization, which relies on the combination of different sensitive-snippet classifiers.
Roughly speaking, a snippet is any video segment that is smaller than the entire video,
and that preserves the temporal order of the scenes. It may start and it may end at
any video time, as long as the starting time precedes the ending time. In addition, each
snippet classifier may rely on a particular data modality (e.g., video frames, audio stream,
video space-time, etc.) –– that defines the multimodal nature of the solution.

The proposed fusion approach ultimately resulted in the filing of two patents, one in
the Brazilian National Institute of Industrial Property (INPI) [5], and the other in the
United States Patent and Trademark Office (USPTO) [6]. Moreover, it helped us to reach
second place within the international MediaEval violence-detection 2014 competition (in
the so-called generalization task, which considered webvideos [4]). Finally, the approach
also resulted in a regular journal paper, currently in its final stages of preparation [65].

This chapter is related to hypothesis H2 (please refer to Section 1.1), which states
that it is possible to localize sensitive content within the video timeline, by means of the
classification and fusion of temporal-overlapping video snippets. It aims at the goal of
designing and developing effective methods for sensitive-content localization. For that,
it is organized as follows. In Section 6.1, we explain the high-level multimodal fusion
pipeline of sensitive-snippet classifiers, that was designed for sensitive-content localization.
Thereafter, in Section 6.2, we detail the challenges and the solutions for performing snippet
classification, as a basic requirement of the proposed solution. Finally, in Section 6.3, we
present the final remarks of this chapter.

88



CHAPTER 6. FROM MANY TO ONE: COMBINING MULTIMODALITIES 89

6.1 High-Level Multimodal Fusion of Snippet
Classifiers

In the video-classification problem, formerly addressed in Part I, the solutions are sup-
posed to attribute a label to an entire well-defined video unit (for instance, a label for
an entire video shot, or a label for an entire video file). That makes the application of
BoVW-based approaches straightforward: just establish a bag per video unit of inter-
est, for a further label-prediction learning (in training system execution), or for a further
discrete classification (in test system execution).

However, in the current content-localization problem, in which the solutions are sup-
posed to point out when a stream starts or ceases to display inappropriate content, there
is not such a clear definition of video unit of interest to be labeled. Hence, in face of
such absence, how could one still benefit from the use of BoVW-based classification ap-
proaches? For instance, given the many possibilities of video segmentation (e.g., frames,
shots, scenes, etc.), in what unit shall one pool the mid-level features, in order to provide
bag labels that are more supportive of the task of content localization?

In this work, we tackle such problem by pooling and normalizing consecutive features,
as long as they belong to a same fixed-length video segment (a.k.a., a snippet). The
reasons for taking this path and also the means for doing it are discussed in Section 6.2.
As a consequence of such decision, we can admit that we have available sensitive-snippet
classifiers, as initial resources for performing sensitive-content localization. In addition,
considering that each snippet classifier can rely on a particular data modality (e.g., video
frames, audio stream, video space-time, etc.), we highlight the multimodal potential of
the proposed solution.

Figure 6.1 depicts a flowchart overview of the method that is proposed for performing
sensitive-content localization. Each rounded rectangular box is an activity, and the solid
arrows represent the precedence of activities. Dashed arrows represent a simple flow of
data. As one might observe, we suggest a late fusion of snippet classifiers.

As pointed out by Atrey et al. [3], late-fusion strategies have the advantage of offer-
ing easier scalability, regarding the addition or subtraction of classifiers, when compared
to early-fusion solutions. Besides that, early-fusion strategies present the drawback of
having to combine low-level features from different modalities (e.g., visual and auditory),
which certainly present distinct types of representation (for instance, in terms of dimen-
sion, scale, data type, etc.). In opposition, late-fusion solutions combine decisions at the
semantic level, hence dealing with the same type of representation (e.g., classification
scores, distances to decision hyperplanes, etc.). Due to the manipulation of data in more
akin domains, late-fusion alternatives are usually more straightforward to be performed.

In more details, we suggest a machine-learning solution that aims at finding the best
strategies of lately combining the outputs of N snippet classifiers (i.e., we propose a
meta-learning strategy). Each snippet classifier Ci(ti) — with i ∈ [1..N ] — is an expert
in predicting the sensitiveness of ti-second-sized snippets. The sensitiveness, in turn, can
be given through confidence scores, or distances to decision hyperplanes, or integer labels
(e.g., +1 for sensitive, −1 for non-sensitive), etc., depending on the system settings. From
now on, we will simply refer to such values as snippet classification scores.
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Figure 6.1: Sensitive-content localization method overview. Each rounded rectangular box
is an activity, and the solid arrows represent the precedence of activities. Dashed arrows
represent a simple flow of data. Depending on the type of system operation (training or
test), the activity sequence may reach either the training, or the test end. The Snippet
Classification activity is internally detailed, for depicting the use of N different Snippet
Classifiers, as initial resources, which are properly represented as black boxes. Each
snippet classifier Ci(ti) — with i ∈ [1..N ] — is an expert in predicting the sensitiveness
of ti-second-sized snippets.

As expected from most of the machine-learning techniques, the resulting fusing system
may operate in one of two modes, namely training and test operation. It is depicted
in Figure 6.1: depending on the type of system operation, the activity sequence may
reach either the training end, or the test end. As it follows, in Section 6.1.1, we detail
the training activity sequence (Snippet Classification, Snippet Alignment, Fusion Vector
Extraction, and Fusion Meta-Learning), in which the desired system content-localization
behavior is learned from the labeled Fusion Training Dataset. In Section 6.1.2, in turn,
we explain the test activity sequence (Snippet Classification, Snippet Alignment, Fusion
Vector Extraction, Fusion Vector Class Prediction, Classification Score Smoothing, and
Classification Score Combination), in which an arbitrary unlabeled Test Video is presented
to and analyzed by the system.
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6.1.1 Training Activity Sequence

Figure 6.2 depicts the training activity sequence of the proposed fusion solution, by means
of an illustrative toy case, with N = 2 snippet classifiers, and a Fusion Training Dataset
that contains three videos (Videos A, B, and C, in the related diagram). Notwithstanding,
in spite of the quantity of snippet classifiers, and of training videos, the aimed operation
is always divided into four steps.

Snippet Classification

Step 1 refers to the Snippet Classification activity, in which the Fusion Training Dataset
— represented by a hollow cylinder — is submitted to the snippet classifiers. The train-
ing dataset must be annotated at frame level, with the indications of the starting and
ending times of the sensitive and non-sensitive sequences. The snippet classifiers, in turn,
are represented by black boxes, in the sense that it is not important how they operate,
considering the execution of the proposed fusion method. They can be implemented with
BoVW-based approaches, in accordance with the scope of this research, but they are
not necessarily limited to that. In fact, what they really need to do is to return a set
of classified snippets, which are grouped per classifier (and thus per length ti), and per
training video. Please notice that, in the chosen notation, we represent each snippet by
a hollow rectangle, containing the resulting classification score in the center, and a small
chronometer on the lower right corner, to highlight their temporal nature. The widths
of these rectangles are supposed to indicate their duration, which means that — for the
sake of illustration — Snippet Classifier 1 (C1(t1)) is able to classify snippets that are
longer than the snippets analyzed by Snippet Classifier 2 (C2(t2)). Actually, in the given
example, t2 = 3 t1/5.

Snippet Alignment

Step 2 refers to the Snippet Alignment activity, which is performed per training video:
at such point, snippets coming from different streams cannot be mixed together yet. As
one might observe in Figure 6.2, given that the snippets are defined by a starting and
an ending time, they are all aligned along the video timeline, in order to reveal their
coincidences.

In practice, the Snippet Alignment activity is performed as follows. For each classifier,
the respective snippets are sorted according to their starting times. That leads to one
sorted list of snippets per classifier. These lists are thus stored, for further use by a
query function q(t), which retrieves all the snippets, within all the lists, that coincide at
a given instant of interest t. This is done through a binary search over each sorted list,
which compares the instant of interest, and the bounds (starting and ending times) of the
snippets.

Fusion Vector Extraction

Step 3, in turn, refers to the Fusion Vector Extraction activity. At this point, we want to
generate a finite number of fusion vectors, which bundle the classification scores that were
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Figure 6.2: Toy-case instantiation of the proposed fusion training pipeline. The method
starts with the Fusion Training Dataset (Videos A, B, and C ), which is submitted to
the different snippet classifiers that need to be fused: classifiers C1(t1) and C2(t2). The
training dataset sensitiveness must be annotated at frame level. The method ends with a
meta-learned classification model (fusion classification model), which must be stored for
further use, during the test system operation. The size of the training dataset, and the
quantity of combined snippet classifiers, can be larger than the given example, with no
changes on the order of the depicted steps.

previously returned by the various snippet classifiers. For that, we sample the snippet
alignments at every d seconds of video. Each second leads to an instant of interest t,
which is fed to the aforementioned query function q(t), and retrieves all the snippets that
coincide at t.
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Figure 6.3: Extracting the combined confidence vectors for later fusion. In this example,
four snippet classifiers are being combined, regarding the content of Video X. Fusion
vectors are extracted every d seconds of video, and are filled with snippet classification
scores. Missing values are indicated by ϵ. The different vector component colors indicate
the source snippet classifier.

Figure 6.3 depicts the combination of fusion vectors, within the Fusion Vector Ex-
traction activity, for a particular case of combining four snippet classifiers. As one might
observe, for each video instant of interest (that is obtained in accordance to d), a fusion
vector is extracted, containing the classification scores of coincident snippets. The co-
incident snippets must be sorted by source classifier and starting time, according to a
predefined order of snippet classifiers. As a matter of fact, such order can be any, as long
as it is repeated in the test system operation. In Figure 6.3, the colors of the fusion vector
components indicate the snippet classifiers they are linked to, and therefore they reveal
the fusion order.

The length l of every fusion vector is given by:

l =
N∑
i=1

⌈
ti
si

⌉
, (6.1)
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where N is the number of fused snippet classifiers, ti is the length — in seconds — of the
snippets for which classifier Ci is expert in predicting, and si is the step — in seconds —
used to start a new snippet that is supposed to be analyzed by classifier Ci. Equation 6.2
calculates the size of the fusion vectors that are depicted in Figure 6.3, where N = 4:

lsample =

⌈
t1
s1

⌉
+

⌈
t2
s2

⌉
+

⌈
t3
s3

⌉
+

⌈
t3
s4

⌉
∴

=

⌈
5

2

⌉
+

⌈
3

2

⌉
+

⌈
10

7

⌉
+

⌈
5

5

⌉
= 8.

(6.2)

On the occasion of creating the fusion vectors, in the case of missing snippets (and
thus missing classification scores), the respective vector components may be assumed as
a value of complete uncertainty (e.g., 0.5, in the case of a normalized confidence score,
which varies from zero — i.e., no confidence at all — to one — i.e., total confidence), or
they can be interpolated. Missing vector components are represented by ϵ, in Figure 6.3.

Fusion Meta-Learning

Back to Figure 6.2, each discrete fusion vector that is obtained in Step 3 is linked to an
instant of interest, within the target video timeline. As one might observe, the labels of
such vectors are deductible from the training dataset groundtruth, being either depicted
in red, if the vector concerns a sensitive instant, or in white, if the vector lies within a
non-sensitive segment. In the sequence, the Fusion Meta-Learning activity (Step 4 ) refers
to the application of a machine-learning technique for generating a mathematical model
that is able to predict the labels of unknown fusion vectors. Given that these fusion
vectors are generated from previously machine-learned classification scores, we may say
that we are performing a meta-leaning of the joint behavior of such scores.

In this work, we explore three implementation alternatives for the Fusion Meta-
Learning activity: (i) score thresholding, as a baseline, (ii) Naïve Bayes Classifier [78],
as a representative of generative strategies, and (iii) SVM [91], as a representative of dis-
criminative strategies. In addition, all of them are conceived to return a confidence score,
in the real interval [0..1], when classifying each fusion vector, which we refer to as fusion
score. In the following, we give details of each one of these three fusion meta-learning
methods.

Score Thresholding In opposition to the other strategies, the score thresholding so-
lution does not learn a mathematical model from the training dataset. In fact, one can
admit that the model is known in advance, from the following and reasonable common
sense: the ultimate label of the fusion vector is supposed to be that one that is detected
with the greatest confidence, over the coincidental snippet classifiers.

For that, we average the confidence scores that lie within each fusion vector component.
Let v[i] be the i-th snippet classification score, within a target fusion vector v whose length
is l (i.e., i ∈ [1..l]). The resulting fusion score of v is given by:



CHAPTER 6. FROM MANY TO ONE: COMBINING MULTIMODALITIES 95

fusion_score(v) =

∑l
i=1 v[i]

l
, (6.3)

where l is given by Equation 6.1.
With such fusion score, we define the label of v as being:

label(v) =

{
positive, if fusion_score(v) ≥ τ ;

negative, otherwise,
(6.4)

where τ is the decision threshold.

Naïve Bayes Classifier As explained in [75], generative strategies for data learning
usually establish a model of the joint probability of observations and labels, which are
generalized by means of the Bayes theorem, for predicting the most likely label of an
arbitrary unknown observation. In this work, we experiment with a simplified discrete
naïve Bayes strategy [78].

For that, we start with the binarization of the training fusion vectors, through the
application of a threshold τ over each vector component. Let v[i] be the i-th snippet
classification score, within a target fusion vector v whose length is l (i.e., i ∈ [1..l]). The
binary value b(v, i) that is respective to v[i] is given by:

b(v, i) =

{
1, if v[i] ≥ τ ;

0, otherwise.
(6.5)

The binarization of scores reduces the fusion vector space to a finite number of 2l

possibilities, where l is the size of the fusion vectors. In face of such limited number
of possible l-sized binarized fusion vectors (which are the observations), we adopt a fre-
quentist approach to estimate the probabilities of each possible combination occur in the
training set. In other words, we count, over the training dataset, how many positive
and how many negative samples occur for each l-sized observation bj, with j ∈ [1..2l],
according to the training groundtruth. This procedure allows us to calculate the (i) prior
probabilities p(bj) of all observations, the (ii) prior probability of finding a positive sample
— p(positive) — and (iii) the conditional probabilities p(bj|positive) (i.e., the probability
of an observation bj be positive), only by relying upon the frequencies of the observations.

The mentioned prior and conditional probabilities (i, ii, and iii) constitute the fusion
classification model (please refer to Figures 6.2 and 6.4). For predicting the probability
of an arbitrary l-sized binarized vector bj being positive, we apply the Bayes theorem:

p(positive|bj) =
p(positive)× p(bj|positive)

p(bj)
, (6.6)

where j ∈ [1..2l].
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Complementarily, we calculate the probability of bj being negative as
1.0 - p(positive|bj). For determining its label (positive or negative), we pick the
one that is more probable (i.e., positive, if p(positive|bj) ≥ 0.5, or negative, otherwise).
Additionally, we return p(positive|bj) as the resulting fusion score.

Support Vector Machine In contrast to the generative strategies, discriminative
strategies focus on directly modeling the posterior probability of an observation belong
to a target class [75]. Typical representatives include the solutions that aim at estab-
lishing the boundaries that better separate elements from different problem classes. The
posterior probability, thus, can be estimated as a function of the element distance to the
boundary. The farther away an element is from the boundary within the side of class x,
the stronger the evidence of belonging to x.

SVMs [91] are popular representatives of such discriminative strategies. Roughly
speaking, SVMs comprise supervised-learning methods that compute the optimal hyper-
plane that better separates a feature space into two classes. In addition, it is possible to
transform the original feature space into another, in which the computed separation hy-
perplane is more effective for class separation. This is done implicitly, by means of a kernel
function, which algebraically operates over the elements of the original feature space, to
find their representatives into the new better-separable higher-order feature space.

In this work, we apply an SVM with a Radial Basis Function (RBF) kernel, for learning
how to separate the fusion vectors into positive and negative samples. As pointed out
in [48], RBF is a reasonable choice for SVM kernel, because it nonlinearly maps samples
onto a higher dimensional space, so that, in the case of class elements being nonlinearly
separable, the nonlinearity is handled. For reporting the fusion score (i.e., the SVM
prediction confidence), we employ the standard Platt normalization [72], which calibrates
the element distances to the decision hyperplane, conveniently returning a value in the
real interval [0..1].

6.1.2 Test Activity Sequence

Figure 6.2 depicts the test activity sequence of the proposed fusion solution, by means
of an illustrative toy case, with N = 2 snippet classifiers. Notwithstanding, in spite of
the quantity of snippet classifiers, the aimed operation always starts with an arbitrary
video (Test Video D), and is always divided into six steps. The initial three activities
(represented by Snippet Classification, Snippet Alignment, and Fusion Vector Extraction)
are the same from the training sequence. The only difference relies on the absence of
timeline groundtruths — in the test case — with no impact on the refereed activities. The
three remaining activities (Fusion Vector Class Prediction, Classification Score Smoothing,
and Classification Score Combination), which are test-exclusive, are detailed as it follows.

Fusion Vector Class Prediction

Prior to this step, the target video (properly represented by Test Video D, in Figure 6.4) is
supposed to have been segmented into snippets, which must have been classified during the
Snippet Classification activity. In addition, the classified snippets must have been aligned
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Figure 6.4: Toy-case instantiation of the proposed fusion test pipeline. The method starts
with the unlabeled sample Test Video D, which is submitted to the different snippet
classifiers that are fused: classifiers C1(t1) and C2(t2). The method ends returning the
instants when Test Video D starts and ceases to display sensitive content, optionally
enriched by confidence scores. The quantity of combined snippet classifiers can be larger
than the given example, with no changes on the order of the depicted steps.

along the video timeline (during the Snippet Alignment), and thereafter combined into
fusion vectors (during the Fusion Vector Extraction activity). In the particular case of
the Fusion Vector Extraction activity, it is important to mention that the order in which
the snippet classification scores are combined — for generating the fusion vectors — must
be the same that was adopted in the training system operation (please refer to Figure 6.3,
for more details).

As one might observe, in the beginning of Step 4, in Figure 6.4, the labels of the
fusion vectors are unknown (what is represented by their gray colors). Hence, the system
retrieves the fusion classification model, and predicts the labels of each fusion vector,
with a proper confidence score. That justifies their red and white colors, in the end of
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Step 4. As a result of that, considering that each fusion vector represents a discrete
instant of interest within the target video timeline, the predicted labels actually classify
the sensitiveness of every video instant of interest.

Strategies to perform the class prediction are a consequence of the chosen Fusion Meta-
Learning solution, which — as already mentioned — may comprise SVM [91], Naïve Bayes
Classifiers [78], etc.

Classification Score Smoothing

Obtaining a classification confidence score for every video instant of interest may gener-
ate a very noisy answer in time, with interleaving positive and negative segments at an
unsound rate, which may change too much and too fast, regarding the actual occurrence
of enduring and relevant sensitive events. Hence, in the Classification Score Smoothing
activity, we can use a denoising function for flattening the classification scores, along the
video timeline.

In this work, we propose the use of a unidimensional Gaussian blurring function, with
standard deviation σ, which is convolved with the time-sorted sequence of classification
scores. That leads to a more well-behaved sequence of scores, besides offering the oppor-
tunity of eliminating eventually incorrect predictions, according to the time-surrounding
evidences. Dai et al. [29] report to adopt a similar solution, which relies upon an score-
averaging convolution filter, instead of a Gaussian one.

Classification Score Combination

Finally, the Classification Score Combination aims at combining the discrete scores of
adjacent video instants of interest that belong to the same sensitive class, according to
decision thresholds. The inherent idea is to substitute the sequences of diverse scores by a
single, time-continuous, and representative one, which may persist for a longer time, thus
better characterizing the sensitive and non-sensitive video moments. Strategies to do that
may comprise (but are not limited to) assuming a score threshold t, and then substituting
all the time-adjacent scores equal to, or greater than t, by their average value (which is
certainly not smaller than t). Complementarily, all the time-adjacent scores smaller than
t shall be replaced by their average value, which, in turn, is certainly smaller than t.

In the end, we come up with a continuous answer, which discriminates the instants
the target video starts and ceases to disclose sensitive content.

6.2 Snippet Classification

In this work, we suggest to operate on the mid-level layer, in order to adequate the BoVW
pipeline to the sensitive-content localization problem. As mentioned in Section 2.1.2, such
layer is related to the combination of the low-level local features into broader represen-
tations, with intermediary complexity. In such process, we know that it is desirable to
combine the features in such a way that they incorporate some semantic information from
the classes of the problem. In addition, as it is reasonable to expect, features referring to
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Figure 6.5: Non-overlapping bags of features. Each bag is obtained from a non-overlapping
video snippet (either Snippet 1, or Snippet 2 ). Images 1-8 depict the frames of a video
sequence of interest. Frames 3-6 depict a violent event. Snippet 1 comprises frames 1-4,
and the respective local features, which are represented by small colorful circles. Snippet
2 comprises frames 5-8, and the respective features. Due to the non-overlapping nature
of the snippets, the violent content is improperly split in the middle, and spread between
the two bags.

the same sensitive captured moment shall be adjacent in time. Thus, a useful semantic
information can be the temporal proximity of the features, along the video timeline.

With that in mind, we propose to pool and to normalize consecutive features, as long as
they belong to a same fixed-length video segment (a.k.a., a snippet). Moreover, as we are
looking for designing a more general-purpose solution, we do not assume anything about
the target video stream, regarding number of camera sources, presence of scene cuts,
amateurishness, or studio film grammar. Instead, we recommend to establish snippets
that systematically overlap in time, as an effort to let sensitive events be entirely enclosed
by at least one bag, in spite of eventually being split among the others.

6.2.1 Overlapping Snippets

Figure 6.5 depicts the situation in which the pooled snippets do not overlap, such as the
usual strategies proposed in [99, 55, 29]. Images 1-8 represent the frames of a sample video
sequence, whose frames 3-6 capture a sensitive event (actually, a violent event, regarding
one kid punching another, properly highlighted in red). Over the frames, the colored cir-
cles illustrate eventually extracted local features, and the two non-overlapping rectangles
that are positioned below represent the snippets that one might use, for establishing bags
of such features. As one might observe, due to the non-overlapping nature of the bags,
the violent motion is split in the middle and, therefore, it is entirely represented by none
of the bags.

In contrast to Figure 6.5, Figure 6.6 illustrates the benefit of our suggestion of pooling
overlapping snippets, with redundant content. The new overlapping Snippet 1.5 is a
video segment whose bag shares local features with the bags of Snippets 1 and 2. As a
consequence, in spite of Snippets 1 and 2 splitting the violent content, Snippet 1.5 allows
us to establish a bag that better represents the sensitive motion, without sudden mid
fragmentation.
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Figure 6.6: Overlapping bags of features. Each bag is obtained from a particular video
snippet (either Snippet 1, or Snippet 2, or the overlapping Snippet 1.5 ). Images 1-8
depict the frames of a video sequence of interest, with frames 3-6 containing a violent
event. Snippet 1 comprises frames 1-4, Snippet 2 comprises frames 5-8, and Snippet 1.5
comprises frames 3-6. Contrary to Figure 6.5, in spite of Snippets 1 and 2 splitting the
violent content, the overlapping Snippet 1.5 might result in a bag that captures most of
the sensitive event.

Pooling and normalizing the mid-level features according to overlapping fixed-length
snippets mean that we aim at training snippet classifiers. Prior to the training process,
one must choose a length t, measured in seconds, for the duration of the snippets, and
a sliding step s, also measured in seconds, to systematically start a new snippet along
the video timeline. For the sake of illustration, let us admit t = 10s, and s = 1s. It
means that, given a target video stream, we can group and analyze visual features inside
windows of 10s, that start at every second of movie.

The values of t and s may depend on the nature of the low-level video descriptions
(e.g., space-temporal, static, etc.), and on the characteristics of the target sensitive content
(e.g., violence, pornography, etc.). Nevertheless, in Section 6.1, we introduced a high-level
fusion method of snippet classification outputs, which allows the combination of diverse
classifiers that might have been trained with different sizes of t and s, despite of relying
on the same low-level features. In addition, such fusion method also allows us to combine
different low-level features and modalities (e.g., visual and auditory features) for the
different snippets that are being considered.

6.2.2 Snippet Labeling

If the training dataset is annotated with a granularity of seconds, an extracted snippet
may partially coincide with sensitive, and partially coincide with adjacent non-sensitive
video segments. In such cases, what label can we assume, specially in the training process?

As a solution for that, we propose two percentile variables n and p. Regarding the n

one, we can, for instance, assume it as n = 100.0%, indicating that the extracted snippets
are considered non-sensitive if they fall entirely out of all the given sensitive segments. On
the other hand, we can assume p = 75.0%, indicating that snippets coinciding in 75.0%
with any of the sensitive sequences are meant to be labeled as positive.
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Figure 6.7: Extraction and labeling of snippets within a video stream. This configuration
is supposed to be used in the training stage of a solution to the sensitive-content localiza-
tion problem. For the sake of illustration, consider s = t/2, p = 75.0%, and n = 100.0%.
White snippets are non-sensitive (negative), while red snippets are sensitive (positive).
Gray snippets are not supposed to be used in the training process.

Table 6.1: Proposed variables to the scheme of snippet pooling. Variables t and s are
measured in seconds. Variables n and p correspond to percentile values.

Variable Meaning

t Size of the snippets that group adjacent features, in the movie timeline.

s Sliding step to start a new snippet, in the movie timeline.

n Percentage of snippet falling out of sensitive segments, in order to be labeled as negative.

p Percentage of snippet falling inside sensitive segments, in order to be labeled as positive.

Figure 6.7 depicts how the mentioned variables t, s, n, and p would impact on the
extraction and on the labeling of snippets, in the case of s = t/2, p = 75.0%, and
n = 100.0%. As one might observe, by adopting such strategy, we may not only obtain
non-sensitive and sensitive snippets (respectively represented by white and red boxes),
but may also gather dispensable ones (in gray), which might not be used in the training
process.

Table 6.1 summarizes the four parameters. In the test system execution, when one
is predicting the classes of the snippets, the variables n and p have no effect. Regarding
variable t, we recommend the use of the same value that was employed in the training
stage as we expect the previously trained classifier to be an expert in classifying snippets
with size t seconds. Concerning variable s, we suggest the use of a small size, which may
not necessarily be the same that was used in the training system operation. The idea
here is to have as many snippet classifications as possible, along the target video timeline.
We leave to the further high-level multimodal fusion process the task of combining the
overlapping classification scores into a single continuous answer, as it is explained in
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Section 6.1.

6.3 Final Remarks

The problem of sensitive-content localization is arguably more complex than the previ-
ously tackled problem of sensitive-video classification. It suffers from the same big-data-,
pervasiveness-, subjectivity-, and urgency-related challenges, but with the worsening of
having to find all the moments a stream starts and ceases to display sensitive content, in-
stead of answering a single yes-no question. To be fair, we can admit that the localization
problem is at least as difficult as the classification one.

In face of such complexity, in the case of the sensitive-content localization problem,
we focused on designing an effective solution, and we ultimately aimed at dealing with
the detected-content subjectivity. For that, we bet on relying upon the complementarity
of distinct snippet classifiers, that shall individually use different data modalities (e.g.,
video frames, audio stream, video space-time, etc.). Moreover, we recommend a dense
analysis of the target video streams, by means of time-overlapping snippets, and we
propose a late fusion of snippet-classification scores, whose separation in positive and
negative samples shall be learned with machine-learning techniques (i.e., we suggest a
meta-learning strategy).

Therefore, as a result, we introduce a novel high-level multimodal fusion pipeline for
sensitive-video localization. Such pipeline is of general purpose, in the sense that it can be
easily adapted for the localization of diverse sensitive content (e.g., violence, pornography,
gore scenes, child abuse, etc.); all one needs to do is to provide a new and soundly frame-
level annotated dataset, with positive and negative examples for a comprehensive training
stage. Furthermore, the pipeline allows us to easily combine the most suitable methods
for analyzing each single modality, such as — for instance — hidden Markov models for
audio, and SVMs for images, seamlessly. That would be much more difficult, if we had
chosen an early-fusion approach.

In the next two chapters, we validate the fusion pipeline, for both pornography local-
ization (in Chapter 7), and violence localization (in Chapter 8). We combine visual and
auditory features, which are obtained with diverse low-level descriptors.





Chapter 7

Pornography Localization: Experiments

In this chapter, we validate the sensitive-content localization pipeline that was introduced
in Chapter 6, for the particular case of pornography detection. We thus evaluate the
combination of diverse snippet classifiers, which individually rely upon the description of
different data modalities (from auditory to visual features).

For that, in Section 7.1, we explain the adopted experimental setup, in terms of
dataset, experimental protocol, metrics, selected snippet classifiers, parametrization, and
implementation details. Afterwards, in Section 7.2, we report the experimental results,
while in Section 7.3, we present some final remarks.

7.1 Experimental Setup

As explained in Section 2.2, to the best of our knowledge, there is no video dataset
in the literature that provides frame-level annotation for supporting the task of porno-
graphic content localization. To cope with this, we annotated every frame of the 140-hour
Pornography-2k dataset (previously introduced in Section 4.1.1), a process that we detail
in Section 7.1.1. In Section 7.1.2, we explain the experimental protocol and the metrics
we use to evaluate the results, while in Section 7.1.3, we present the multimodal snip-
pet classifiers we have designed and selected for combination. Next, in Section 7.1.4, we
define the parameters of the explored high-level fusion solutions, focusing on the Fusion
Meta-Learning task alternatives (please refer to Section 6.1, for details about such task).

7.1.1 Pornography-2k Dataset Annotation

To facilitate the assessment of the strategies aiming at localizing pornography, we decided
to take a step further with the Pornography-2K dataset: to annotate it at frame level.

In order to support the task of annotating the videos of the Pornography-2K dataset,
we developed a tool to extract every frame of a given video, and thus show the images in
a time-sorted and keyboard-controlled way. Therefore, by inspecting the frames one-by-
one, and pressing the correct keys, one can easily annotate parts of the stream as positive
or negative. Additionally, the task can be safely accelerated by increasing or decreasing
the speed of showing images onto the screen, and the frames can be played in normal or
reverse order.

104
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(a) (b)

Figure 7.1: Interface of the frame annotation tool. In (a), frame 123 is being tagged as
negative. In (b), frame 689 is being tagged as positive.

Figure 7.1 depicts the interface of the annotation tool, by showing two labeling situ-
ations. The program is fully keyboard-based, for a matter of agility. Annotation status
is shown at the top, and available commands are displayed at the bottom. The current
frame goes in the middle. Figure 7.1(a) shows a situation of labeling frame 123 as nega-
tive. Figure 7.1(b), in turn, shows the labeling of frame 689 as positive. The software is
written in C++, and it relies upon the OpenCV C++ API [17].

As one might observe, we had 2,000 videos to annotate. With respect to the 1,000
negative videos, the annotation process was simple: they were automatically and entirely
marked as negative frame sequences.

In turn, concerning the 1,000 positive videos, we had to inspect every frame of the
dataset. For that, we recruited four RECOD1 members to concurrently annotate the
videos, with the help of the video annotation tool. Each one was responsible for 250 videos,
that were randomly distributed. In order to equalize the situations one should consider
positive, all annotators adopted the concept of pornography as of being “any explicit sexual
matter with the purpose of eliciting arousal” [81]. Moreover, five videos were chosen at
random and, prior to the major official annotation process, all four members dedicated
some time to annotate these samples for further discussion, aiming at calibrating the
opinions.

Table 7.1 brings the statistics of the annotated videos. As one might observe, the
Pornography-2K dataset has a total of almost 140 video hours. From this total, 91h43min
(65.54%) refer to pornographic content.

1RECOD is the Reasoning for Complex Data laboratory, which is hosted at the Institute of Computing
(IC), of the University of Campinas (Unicamp). Cf. http://www.recodbr.wordpress.com, accessed May
3rd, 2016.

http://www.recodbr.wordpress.com
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Table 7.1: Time statistics on the annotated pornographic videos. As one might expect,
negative videos do not have positive sequences, only negative. Positive videos, in turn,
might have non-pornographic frame intervals.

Negative Sequences Positive Sequences Total

Negative Videos 40h25min 00h00min 40h25min

Positive Videos 07h49min 91h43min 99h32min

Total 48h14min 91h43min 139h57min

7.1.2 Experimental Protocol and Metrics

In face of the 140-hour Pornography-2K dataset, and due to the very time- and resource-
consuming experiments, we apply, for pornography localization, the same variation of the
5 × 2-fold cross-validation protocol [38] that was used in Section 4.1.2: the 3 × 2-fold
protocol. It consists of randomly splitting the dataset into two same-size class-balanced
folds, three times, and in each time, training and test sets are switched, leading to six in-
dependent experiments, for each evaluated solution. In addition, in order to enable paired
tests, we submit the exact six folds to each pornography locator. Therefore, whenever it
is convenient to compare different locators with some statistical confidence, we employ
the non-parametric pairwise Wilcoxon signed-rank test, with Bonferroni’s correction [35].
Lastly, given the nature of our pipeline — in which we have two moments of data learning,
(i) one related to the snippet classification learning, and (ii) the other related to the fusion
meta-learning — we divide the training datasets into two disjoint parts: 60% for snippet
classification learning, and 40% for fusion meta-learning.

Similar to the case of pornographic video classification, for assessing the performance of
the pornography locators, we report the normalized accuracy (ACC), and the F2 measure
(F2). However, the respective values are collected in a different granularity. In the former
case of pornography classification, TPR, TNR, sensitiveness, and precision (which are
basic for calculating ACC and F2

2.) are collected per video file. It thus makes sense to
think about the classification system performance, for instance, as failing to classify one
in every five videos of interest. In the case of pornography localization, on the contrary,
TPR, TNR, sensitiveness, and precision are collected per second of video. With that, we
can report the performance of the localization system, for instance, as failing to localize
one in every five seconds of pornographic video. As a consequence, on the occasion of
localizing pornographic scenes, we verify whether or not the system is right at every
second of video, therefore reporting the averages of ACC and of F2. The reported values
are not averaged over the number of video files anymore. Instead, they are averaged over
the total amount of seconds that comprise all the analyzed videos together.

7.1.3 Multimodal Snippet Classifiers

The proposed high-level fusion pipeline, introduced in Chapter 6, is evaluated through
different combinations of four distinct snippet classifiers. Two of these classifiers rely

2Please refer to Section 4.1.2, for the mathematical definitions
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Table 7.2: Parameter values used in the training of the snippet classifiers. Variables t,
spositive, and snegative are measured in seconds. Variables n and p correspond to percentile
values.

Variable Value Meaning

t 5.0 Size of the snippets.

sp 6.0 Sliding step to start a new positive snippet.

sn 2.5 Sliding step to start a new negative snippet.

n 100.0 Percentage of negative snippet falling out of positive scenes.

p 80.0 Percentage of positive snippet coinciding with positive scenes.

upon auditory features, namely MFCC [32] and prosodic features (fundamental frequency,
voicing probability, and loudness contours). The remaining two rely upon visual features,
of which one is representative of still image descriptors (namely, HOG [30]), and the other
is representative of space-temporal descriptors (namely TRoF, which was introduced in
Section 3.2).

All classifiers are trained to label snippets that are five-second long (i.e., t = 5s). In
preliminary experiments, such duration showed a good compromise between the quantity
of described snippets, vs. the information amount that constitutes each snippet. For in-
stance, on the occasion of learning from a 10-second long positive scene, only one snippet
of 10 seconds can fit such video excerpt. In opposition, if the snippets are five-second
long, many of them can fit the scene, since we allow temporal overlap. Hence, shorter
snippets result in more data to be learned. In the same direction, if we employ two-second
long snippets, we can establish even more snippets within those 10 seconds. Nevertheless,
a two-second snippet has less than half of the information that constitutes a five-second
sample. Early investigations revealed that such shorter sequence is not enough for cap-
turing discriminative pornographic phenomena.

In the training phase of all classifiers, we consider a snippet negative if it falls entirely
out of positive scenes (i.e., n = 100%). Similarly, we consider a snippet positive if it is
at least 80% coincident with positive scenes (i.e., p = 80%). For obtaining a balanced
training set from the Pornography-2k dataset (i.e., a set with nearly the same amount
of positive and negative snippet samples), we extract one positive snippet in every six
seconds of a pornographic scene (sp = 6s), and one negative snippet in every 2.5 seconds
of a non-pornographic scene (sn = 2.5s). In Table 7.2, we summarize such parameters.

In the test phase, we describe one five-second long snippet in every second of a video
sequence (i.e., t = 5s, and s = 1s). That allows us to constitute one fusion vector per
second, over the test dataset.

Regardless of the used low-level features, we employ Fisher Vectors [71] — one of the
best mid-level representations [21] — for aggregating the low-level descriptions, within
all the snippet classifiers. The codebooks are GMM-based, and each GMM is estimated
over one million randomly sampled low-level descriptions (with 500,000 coming from the
training positive scenes, and 500,000 coming from the training negative scenes). More-
over, each GMM is composed of 256 Gaussians, as suggested in [71]. The Fisher Vector
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encoding, and GMM estimation are performed with the support of the VLFeat API [92].
In the high level, we apply linear SVM classifiers — as suggested in [71] — by means

of the LIBLINEAR library [41]. We apply grid search to find the best c-SVM parameter,
during the snippet classification training. Concerning the test phase, we use the option
offered by LIBLINEAR [41], for returning the confidence scores of each class prediction.
The confidence scores are normalized in the real interval [0..1]: the closer to one, the
higher the certainty about the classification.

In the following, we detail the low-level description of each one of the four types of
used snippet classifiers.

Mel-Frequency Cepstral Coefficients (MFCC)

MFCC features are used primarily for speech description [40], and a great deal of works in
the literature have been using it for violent video content detection [1, 36, 99, 29, 63, 55].
In this work, we use it for pornographic content localization, through the OpenSmile
library [40].

For extracting the MFCC features, we use the default parameters of OpenSmile. We
therefore obtain 39-dimensional low-level auditory features in every 40 milliseconds of
audio, without overlap. As a consequence, we associate each MFCC description to one
video frame, allowing us to describe each stream at a rate of 25 frames per second.

Finally, prior to the following Fisher Vector encoding, we apply PCA to reduce the
MFCC descriptions to 24 dimensions (as recommended in [54]). For the calculation of
the PCA transformation (reference eigenvalues and eigenvectors), we randomly sample
one million MFCC descriptions from the training set, with half of them coming from
the negative set, and the other half coming from the positive set. For that, we use the
OpenCV C++ API [17].

Prosodic Features (PROS)

In addition to MFCC, we extract prosodic features (PROS) as a second alternative for
describing audio. Similar to MFCC, we employ the OpenSmile library [40] for obtain-
ing three-dimensional features (fundamental frequency, voicing probability, and loudness
contours) in every 40 milliseconds of audio, without overlap.

Prior to the following Fisher Vector encoding, we apply PCA to whiten the low-
level descriptions (i.e., we maintain their three dimensions), instead of reducing their
size, which is already small. Again, for the calculation of the PCA transformation, we
randomly sample one million prosodic descriptions from the training set, with half of them
coming from the negative set, and the other half coming from the positive set. For that,
we apply the OpenCV C++ API [17].

Histograms of Oriented Gradients (HOG)

To provide a visual descriptor that relies solely on static images, we employ HOG [30] as
the basis of one of the available snippet classifiers. Thereby, for the sake of processing
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time, we extract two frames per second from the video footage. Next, we discard 10% of
the image borders, to remove possible watermarks.

HOG descriptions are then extracted on a dense spatial grid, at five scales. Precisely,
we use patch sizes of 24, 32, 48, 68 and 96 pixels, with step sizes of 4, 6, 8, 11 and 16
pixels, respectively. Each patch is described by a single HOG block, which is divided into
4× 4 HOG cells. Each cell is described by eight bins, what leads to 4× 4× 8 description
values per patch. Hence, the obtained HOG feature vectors are 128-dimensional. For
that, we apply the OpenCV HOG implementation [17].

Prior to the following Fisher Vector encoding, we apply PCA to reduce the size of the
HOG descriptions by half, to 64 dimensions. Similar to MFCC and PROS, we randomly
sample one million HOG descriptions from the training set, with half of them coming
from the negative set, and the other half coming from the positive set, for supporting the
calculation of the PCA transformation.

Temporal Robust Features (TRoF)

To provide a visual descriptor that captures video space-time properties, we employ TRoF
as the basis of one of the available snippet classifiers. In addition, we employ HOG
descriptors to represent the TRoF blob content (please refer to Section 3.2).

For detecting the three-dimensional blobs of interest, with the TRoF detector, we
use the same configuration that is presented in Table 4.2, due to its good preliminary
results, which are statistically equivalent to state-of-the-art video descriptors (please refer
to Section 4.2.2, for details). We therefore calculate the integral video at every 250 frames
of the target video (i.e., c = 250). For each obtained integral video, to describe video
more quickly, we sample one in every four video voxels, in all directions (i.e., s = 4), and
apply four space-temporal scale octaves (i.e., o = 4), to perform the Hessian calculations.
Thereafter, we extract 3,000 blobs at every 250 integral video frames (b = 3, 000).

Finally, prior to the following Fisher Vector encoding, we apply PCA to reduce the
TRoF descriptions from 192 dimensions to half (i.e., 96 dimensions). As usual, for the
calculation of the PCA transformation, we randomly sample one million TRoF descrip-
tions from the training set, with half of them coming from the negative set, and the other
half coming from the positive set.

7.1.4 Fusion Meta-Learning Solutions

As explained in Section 6.1, the fusion pipeline provides — for each video instant of in-
terest — one fusion vector that encodes all the time-coincidental analysis of each snippet
classifier. The Fusion Meta-Learning task, in turn, aims at learning mathematical mod-
els that are able to predict the label of arbitrary unknown fusion vectors, according to
the labels of known vectors (from the training dataset). In this work, we explore three
solutions for performing such task: (i) score thresholding, as a baseline, (ii) Naïve Bayes
Classifier, as a representative of generative strategies, and (iii) SVM, as a representative
of discriminative strategies. In addition, all of them are conceived to return a confidence
score, in the real interval [0..1], when classifying each fusion vector, which we refer to as
fusion score.
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Regardless of the used fusion meta-learning method, in the test system operation, we
always convolve a Gaussian window with standard deviation σ = 5s (the size of each
snippet) over the temporal sequence of obtained fusion scores, for smoothing. It is related
to the Classification Score Smoothing task, which is presented in Section 6.1.2. In the end,
the Classification Score Combination task is performed as pre-conceived: by assuming a
fusion score threshold t = 0.5, we substitute all the time-adjacent scores equal to, or
greater than t = 0.5, by their average value. Complementarily, all the time-adjacent
scores smaller than t = 0.5 are replaced by their own average value.

As a consequence of each snippet classifier being an expert in classifying five-second
snippets, and of a new snippet being evaluated in every second of movie, the resulting
fusion vectors may present the following possible l sizes (in accordance to Equation 6.1):
(i) ten, if two classifiers are combined, or (ii) 20, if four classifiers are combined3. Fur-
thermore, in the case of eventually missing snippets — which are related to the ϵ value,
in Figure 6.3 — the empty fusion vector components are filled with a linear interpolation
of the present ones.

In the following, we give details of the parameters that are used for each one of the
three mentioned fusion meta-learning methods. In all the cases, we always provide a
class-balanced training dataset for learning the fusion of scores.

Score Thresholding (THR)

As aforementioned, each fusion vector has a size l, which is either ten, or 20. The score
thresholding solution (THR) averages the l confidence scores that lie within each fusion
vector component, and defines the ultimate label of the vector according to a threshold
τ . For details, please refer to Equations 6.3 and 6.4.

Considering that we make the combined snippet classifiers return confidence scores
that are normalized in the real interval [0..1] (please refer to Section 7.1.3), we employ
τ = 0.5. Therefore, if the average of fusion scores is greater than, or equal to τ = 0.5, the
fusion vector at hand is labeled as positive; otherwise, it is negative.

Naïve Bayes Classifier (NBC)

As a representative of generative strategies, we employ a discrete Naïve Bayes Classifier
(NBC) for performing the Fusion Meta-Learning activity. As already mentioned, depend-
ing on the number of combined snippet classifiers, the resulting fusion vectors are ten- or
20-sized. In the case of the NBC solution, the value of l has a direct impact not only on
the size of the fusion vectors, but also in the number of possible binarized fusion vectors,
which is given by 2l. We thus have either 1,024 or 1,048,576 possible binarized vectors. As
explained in Section 6.1.2, the NBC strategy considers the frequencies of each possibility,
within the test dataset, for deciding the label of an arbitrary vector, according to the
Bayes theorem (Equation 6.6).

Again, as we are combining the confidence scores that are returned by the snippet
classifiers, we use τ = 0.5, when binarizing a target fusion vector. It is done as depicted
in Equation 6.5.

3As detailed in Section 7.2, we explore only the combination of two, or four snippet classifiers.
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Table 7.3: Results of pornography localization over the Pornography-2K dataset, without
fusion of snippet classifiers. We report the average performance over the 3 × 2 cross-
validation folds. In all experiments, the standard deviation is lower than 0.02.

Solution TPR (%) TNR (%) ACC (%) F2 (%)
N

o-
fu

si
on

au
di

o PROS 75.23 77.39 76.31 77.22
MFCC 79.31 80.13 79.72 80.98

im
ag

e HOG 89.06 85.44 87.25 89.65
TRoF 89.58 83.36 86.47 89.89

TPR: true positive — TNR: true negative rate — ACC: accuracy — F2: F2 measure

Support Vector Machine (SVM)

As a representative of discriminative strategies, we apply an SVM with a Radial Basis
Function (RBF) kernel, for learning how to separate the fusion vectors into positive and
negative samples. Given that in the experiments, the value of l is either ten or 20, we opt
for an RBF kernel, as recommended in [48].

For that, we employ the LIBSVM API [20] for training fusion vector classifiers, and
for predicting the class of arbitrary fusion vectors. As defined in Section 6.1.2, the fusion
scores are calibrated by the standard Platt normalization [72]. Moreover, for finding the
parameters that lead to the best RBF SVM, we perform a grid-search with five-fold cross
validation over the training dataset, as suggested in [48]. All these features are available
in the LIBSVM API [20] implementation.

7.2 Results

In this section, we present the results of the proposed fusion pipeline, on the occasion of
combining the snippet classifiers that were described in Section 7.1.3, in varied manners.
First, in Section 7.2.1, we present the individual results of the snippet classifiers, in face
of the problem of pornography localization, without combinations. Thereafter, in Sec-
tion 7.2.2, we present the results of combining snippet classifiers that rely upon the same
type of low-level feature (i.e., we provide the results of fusions of audio-based classifiers,
and of fusions of image-based classifiers, separately). Next, in Section 7.2.3, we present
the results of multimodal combinations. Finally, in Section 7.2.4, we present some graphs
that depict the quality of the pornography localization, over two selected samples from
the Pornography-2k dataset.

7.2.1 Single Solutions

In Table 7.3, we present the individual results of the snippet classifiers, without com-
binations, in face of the problem of pornographic content localization. We report the
normalized accuracy rate (ACC) and the F2 measure (F2), both averaged over the 3× 2

cross-validation folds. Furthermore, we report the average true positive (TPR) and true
negative (TNR) rates, to give the reader a broader view of the localization results.
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Table 7.4: Pairwise comparison of the pornographic snippet classifiers. We report the
statistical tests for all 3 × 2 folds, considering ACC and using the paired Wilcoxon test
with Bonferroni’s correction.

PROS MFCC HOG

MFCC 0.030 ✔ – –
HOG 0.030 ✔ 0.013 ✔ –
TRoF 0.030 ✔ 0.013 ✔ 0.558 •

p-values • not statistically different ✔ row solution is better

As one might observe, visual features are more suitable for the task, with static and
space-temporal approaches showing close performance. Indeed, as it is presented in Ta-
ble 7.4, TRoF and HOG snippet classifiers are not statistically different with respect to
ACC. Besides that, PROS is the worst solution with 95% of confidence, being statisti-
cally different even to MFCC, which presents second worst results. Notwithstanding, if
we take solely PROS into consideration, it is able to correctly classify one in every four
seconds of video (ACC = 76.21%), starting with only three feature values in the low-level
video description (due to the prosodic features). That shows a promising suitability for
describing video in mobile devices, and for dealing with the tradeoff between efficiency
and effectiveness. For instance, a solution with such accuracy may be useful for a quick
parental check on mobile storage devices, prior to leaving it in minor hands.

Starting with these results, an interesting investigation is to verify how much effec-
tiveness improvement a fusion of features will lead to. In the next section, we combine
the auditory, and the visual features, according to their nature, for having a better under-
standing on how these modalities contribute to the localization of pornographic content.
Later on (see Section 7.2.3), we take a step beyond and consider combining features of
different modalities, as well.

7.2.2 Fusion of Solutions with Similar Nature

In Table 7.5, we present the results of combining same-nature solutions (i.e., PROS with
MFCC, for being auditory, and HOG with TRoF, for being visual). Regardless of the
type of fusion meta-learning (THR, NBC, or SVM), the combined visual features once
again outperform the combined auditory features, as expected. Indeed, the single vi-
sual solutions (HOG and TRoF) are better than any combination of auditory features
(PROS+MFCC). That is shown, for instance, in Table 7.6, in the particular case of the
TRoF snippet classifier. TRoF is statistically better than THR-PROS+MFCC, NBC-
PROS+MFCC, and SVM-PROS+MFCC, in terms of ACC, with 95% of confidence.

More important, however, is the fact that the fusion of specific features always result
in better values for ACC and F2 measure, when compared to the isolated use of these
same features. That gives hints about the expected complementarity of the features,
even though, at this point, they are still from similar nature. For example, in the case of
auditory features (PROS and MFCC), the baseline THR fusion leads to an error reduction
— regarding ACC — of nearly 27%, when compared to the solely PROS-based alternative,
and of nearly 15%, when compared to the solely MFCC-based one. Similarly, in the case
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Table 7.5: Results of pornography localization over the Pornography-2K dataset, with
fusion of snippet classifiers that rely upon features of the same nature (auditory or visual).
We report the average performance over the 3×2 cross-validation folds. In all experiments,
the standard deviation is lower than 0.04.

Solution TPR (%) TNR (%) ACC (%) F2 (%)

T
H

R PROS + MFCC 82.84 82.74 82.79 84.21
HOG + TRoF 93.95 87.54 90.74 93.92

N
B

C PROS + MFCC 81.05 81.62 81.33 82.56
HOG + TRoF 90.74 89.40 90.07 91.42

SV
M PROS + MFCC 82.19 82.05 82.12 83.59

HOG + TRoF 90.57 90.01 90.29 91.33

TPR: true positive — TNR: true negative rate — ACC: accuracy — F2: F2 measure
THR: score thresholding — NBC: Naïve Bayes Classifier — SVM: Support Vector Machine

Table 7.6: Pairwise comparison of the TRoF pornographic snippet classifier and the
fusions of audio-based snippet classifiers. We report the statistical tests for all 3×2 folds,
considering ACC and using the paired Wilcoxon test with Bonferroni’s correction. The
solution based solely on TRoF is better than any experimented fusion of audio-based
snippet classifiers.

PROS + MFCC: THR NBC SVM

T
R

oF p-value 0.013 0.013 0.030
conclusion ✔ ✔ ✔

✔ TRoF is better

Table 7.7: Pairwise comparison of the experimented fusions of HOG and TRoF porno-
graphic snippet classifiers. We report the statistical tests for all 3 × 2 folds, considering
ACC and using the paired Wilcoxon test with Bonferroni’s correction.

HOG + TRoF: THR NBC

NBC 0.190 • –
SVM 0.280 • 0.930 •

p-values • not statistically different

of visual features (HOG and TRoF), the baseline THR fusion yields an error reduction
— regarding ACC — of around 27% and 31%, when compared to the solely HOG- and
TRoF-based solutions, respectively.

Concerning the different types of fusion meta-learning (THR, NBC, or SVM), in
the particular case of pornography, we see that the equivalent solutions (e.g., THR-
HOG+TRoF, NBC-HOG+TRoF, and SVM-HOG+TRoF) present very close results, for
both ACC and F2 measure. In such direction, Table 7.7 presents the statistical comparison
of the three types of fusion that we perform for combining HOG and TRoF pornographic
snippet classifiers, for the sake of exemplification. As one might observe, the THR, NBC,
and SVM alternatives are not statistically different, wit respect to ACC.
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Table 7.8: Results of pornography localization over the Pornography-2K dataset, with
multimodal fusion of snippet classifiers. We report the average performance over the 3×2
cross-validation folds. In all experiments, the standard deviation is lower than 0.02.

Solution TPR (%) TNR (%) ACC (%) F2 (%)
T

H
R MFCC + TRoF 92.65 87.51 90.08 92.76

ALL 93.53 87.97 90.75 93.53

N
B

C MFCC + TRoF 91.15 87.90 89.52 91.61
ALL 91.62 88.61 90.18 92.04

SV
M MFCC + TRoF 90.87 89.15 90.01 91.47

ALL 91.32 90.12 90.72 91.93

TPR: true positive — TNR: true negative rate — ACC: accuracy — F2: F2 measure
THR: score thresholding — NBC: Naïve Bayes Classifier — SVM: Support Vector Machine

Table 7.9: Pairwise comparison of HOG+TRoF, MFCC+TRoF, and
HOG+TRoF+MFCC+PROS (ALL) fusions of pornographic snippet classifiers, all
based on score thresholding (THR). We report the statistical tests for all 3 × 2 folds,
considering ACC and using the paired Wilcoxon test with Bonferroni’s correction.

HOG+TRoF MFCC+TRoF

MFCC+TRoF 0.060 • –
ALL 1.000 • 0.130 •

p-values • not statistically different

In the following section, we report the results of multimodal fusion, and investigate
whether or not the auditory and visual features are complementary for this particular
problem.

7.2.3 Multimodal Fusion Solutions

In Table 7.8, we present the results of combining snippet classifiers that rely upon features
of different nature (e.g., auditory and visual, a.k.a., multimodal solutions). As one might
observe, we evaluate the combination of the best auditory feature with the space-temporal
one (MFCC+TRoF), and alternatively, we evaluate a complete fusion, with all the four
available snippet classifiers (referred to as ALL, therefore combining PROS, MFCC, HOG
and TRoF). The former combination is the one in which the resulting fusion vectors have a
size of l=20. In the other ones, in which always two classifiers are combined, the resulting
fusion vectors are ten-sized (i.e., l=10).

In all cases, the multimodal combinations are not clearly better than exclusively com-
bining visual features (HOG+TRoF solutions). For the sake of exemplification, Table 7.9
summarizes the statistical comparison of the THR-HOG+TRoF fusion solution (which is
solely visual), and the THR-MFCC+TRoF and THR-ALL multimodal pornography lo-
cators. As one might observe, such strategies do not present statistical difference, besides
presenting very close results. It indicates that the audio-based snippet classifiers do not
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produce hits on the occasions in which the visual classifiers miss, and vice-versa. Hence,
they may not be complementary.

The possible reasons for the not so impressive performance of the audio-based snippet
classifiers may rely on the samples of the Pornography-2k dataset. Many of them depict
amateur content, with amateur editing. For instance, it is common to find sexual footage
whose moaning sounds are further covered with electronic music, for not denouncing
ashamed spectators. Therefore, the herein stated observation about non-complementarity
must be considered with a grain of salt. It is particularly true for the dataset we test in
this work. However, it is possible that the cited features present complementary proper-
ties in face of other datasets, specially when considering professionally-edited and studio
pornographic movies.

Finally, once more, the different explored meta-fusion techniques revealed to be fairly
similar in terms of results. Anyhow, in the next section, we present a qualitative analysis
of the performed localization, in which we point out some benefits and some drawbacks
of using machine-learning techniques, in comparison to score thresholding.

7.2.4 Qualitative Evaluation

For the sake of illustration, in this section, we provide a qualitative evaluation of two
video excerpts that were sampled from the Pornography-2k dataset.

Sample Excerpt 1

Figure 7.2 depicts the quality of pornography localization over a 4.5-minute long video
footage, which was sampled from the Pornography-2k dataset, and whose results reveal a
difficult case. Given that each row refers to the same footage, they individually represent
the same timeline. Red and white areas depict the localization groundtruth: red for
positive, and white for negative. As expected, these areas do not change along the boxes.
Black dots, in turn, represent mislocalization. Hence, the lesser the quantity of black
dots, the better the result of a solution. Moreover, some video segments are labeled with
capital letters (from A to H ), for further reference.

In Figure 7.2 (a–d), one can observe the localization quality of each single solution,
with no fusion of features. In the particular case of the footage at hand, the audio-
based snippet classifiers (PROS and MFCC) show a tendency of classifying the content
as pornographic, with the PROS-based solution returning a more constant answer (i.e.,
with less label variations). That explains the higher quantity of hits over the C, and
E positive and longer segments (which are, respectively, 40 and 78 seconds long), when
compared to the image-based ones (HOG and TRoF), but at the cost of generating more
mislocalization over negative segments (false positives), such as B and G (which are,
respectively, 16 and 47 seconds long).

The image-based solutions (HOG and TRoF), in turn, result in answers that present
more label transitions, and a better capability of detecting negative segments, at the cost
of producing more false negatives (e.g., in segments C and E ). The TRoF-based solution,
in particular, is able to detect part of the more difficult six-second D segment, which is
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porn non-porn mislocalization

(a) PROS

(b) MFCC

(c) HOG

(d) TRoF

(e) ALL (THR)

(f) ALL (NBC)

(g) ALL (SVM)

Figure 7.2: Localization quality over a 4.5-minute long Pornography-2k video sample.
Each row depicts the same footage, and therefore the same timelime. Red and white
areas depict the localization groundtruth: red for positive, and white for negative. Black
dots represent the mislocalization of each technique: the lesser the quantity of black dots,
the better the result.
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mislocated by all the other solutions, including the multimodal ones (THR, NBC, and
SVM). However, it provides more false positives in segments C, F, and H.

In opposition to Figure 7.2 (a–d), Figure 7.2 (e–g) depicts the localization quality of
the combinations of all available snippet classifiers. Their difference relies upon the used
fusion meta-learning technique: THR, NBC, or SVM. As one might observe, the THR
solution finds the entire footage as positive, thus presenting a strong recall, but a weak
precision. The machine-learning solutions (NBC and SVM), in turn, provide very close
results, and a better precision than score thresholding: segments B and part of G are not
mistaken as false positives.

Sample Excerpt 2

Figure 7.3 depicts the quality of pornography localization over a 1.5-minute long video
footage, which was sampled from the Pornography-2k dataset, and whose results reveal
an easy case. The notation is the same of Figure 7.2: each row refers to the same footage,
and red and white areas depict the localization groundtruth: red for positive, and white
for negative. Black dots, in turn, represent mislocalization, and some video segments are
labeled with capital letters (from A to C ), for further reference.

In Figure 7.3 (a–d), we show the localization quality of each single solution, with
no fusion of features. As one might observe, contrary to the other results, the PROS-
based strategy provides a good answer, except for some mislocalization in the points of
transition, where the stream changes its sensitiveness (e.g., from segment A to B, and
from B to C ), and for some false negatives in the one-minute long positive segment
B. The MFCC- and HOG-based ones, in turn, result in some additional false positives
within the 23-second long negative segment A, while the TRoF-based alternative presents
mislocalization only in the points of transition.

Regarding Figure 7.3 (e–g) — which depicts the localization quality of the combina-
tions of all available snippet classifiers — the respective answers present better quality,
when compared to the single solutions (they clearly present less black dots), as expected.
In addition, while the SVM-based strategy produces some false negatives in the last tran-
sition (from segment B to C ), the THR- and NBC-based ones perform better, with a
few false negatives in the points of transition, and a perfect recall. The NBC-based one,
indeed, provides the less quantity of false negatives, along the points of transition.

7.3 Final Remarks

The problem of pornographic content localization is prevailing and relevant. For instance,
on the occasion of creating the Pornography-2k dataset, some positive samples were ob-
tained through the biggest video-sharing website on the Internet, without much searching
effort. Hence, nobody feels completely safe when their children go online.

Regardless of that, to the best of our knowledge, prior to this research, there was
no work in the literature that had systematically approached the problem. There was a
lack of a proper dataset, candidate solutions, and metrics, which we had to deal with.
Posterior to filling such gap — and coming with the contribution of providing a frame-
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porn non-porn mislocalization

(a) PROS

(b) MFCC

(c) HOG

(d) TRoF

(e) ALL (THR)

(f) ALL (NBC)

(g) ALL (SVM)

Figure 7.3: Localization quality over a 1.5-minute long Pornography-2k video sample.
Red and white areas depict the localization groundtruth: red for positive, and white
for negative. Black dots represent the mislocalization of each technique: the lesser the
quantity of black dots, the better the result.
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level annotation of the entire 140 hours of the Pornography-2k dataset — we evaluate
the use of the sensitive-content localization pipeline that was proposed in Chapter 6, for
tackling the problem at hand.

From the preliminary results, reported herein, we verify that we are in the direction
of solving the problem although many contributions are still possible. With the best so-
lutions (THR-HOG+TROF, NBC-HOG+TROF, and SVM-HOG+TROF, which present
very close results), we fail at identifying around five minutes in every hour of pornographic
content, indicating a reasonable content filter. In addition, out of every minute we iden-
tify as being pornographic, five seconds are benign, therefore being mistakenly classified
as inappropriate. That also indicates a reasonable content analyzer.

Finally, we find the isolated or combined use of auditory features such as MFCC and
prosodic less effective than combining visual features, for locating pornographic content.
Reasons for that may be related to the poor sound edition of the frequent amateur content,
or even the low discriminative ability of the captured speech-related features (since MFCC
and prosody are originally aimed at speech recognition).

The best solutions rely upon visual snippet classifiers only (HOG- and TRoF-based),
which individually present low-memory footprint, and small processing time. In this vein,
with the correct configuration of snippet overlap — which is yet subject to investiga-
tions, considering particular mobile platforms and requirements, as we properly indicate
as future work, in Chapter 9 — these solutions are suitable for deployment on mobile
devices.



Chapter 8

Violence Localization: Experiments

In this chapter, we validate the sensitive-content localization pipeline that was intro-
duced in Chapter 6, for the particular case of violence detection. Similar to the case of
pornography detection, we evaluate the combination of diverse snippet classifiers, which
individually rely upon the description of different data modalities (from auditory to visual
features). Additionally, for the sake of investigation, we compare the pipeline with three
works of the literature [29, 99, 55], which ranked best in the MediaEval 2014 subjective
violence localization competition [80].

For that, in Section 8.1, we explain the adopted experimental setup, in terms of
dataset, experimental protocol, and metrics (which are inherited from the MediaEval
2014 VSD task [80]), in addition to selected snippet classifiers, parametrization, and
implementation details. Afterwards, in Section 8.2, we report the experimental results,
while in Section 8.3, we present some final remarks.

8.1 Experimental Setup

We have discussed, throughout this work, the importance of the MediaEval VSD
task [80, 34, 33], for the problem of violence detection. Once more, to benefit from
the provided common groundtruth and standard evaluation protocols, we use the Medi-
aEval benchmark for conducting the experiments. Hence, in Section 8.1.1, we present
some details of the MediaEval 2014 dataset [80], which refers to the VSD edition that had
evaluated violence localization. Next, in Section 8.1.2, we explain the competition exper-
imental protocol, and the metrics used to evaluate the results, while in Section 8.1.3, we
present the multimodal snippet classifiers we have designed and selected for combination.
Next, in Section 8.1.4, we define the experimented high-level fusion solutions, focusing on
the Fusion Meta-Learning task alternatives (please refer to Section 6.1, for details about
such task).

8.1.1 MediaEval 2014 Violent Scenes Detection Dataset

The MediaEval 2014 VSD dataset [80] is built on top of the 2013 edition (please refer to
Section 5.1.1, for details). All the movies used in 2013, but Kill Bill, are adopted as the
new training set (thus comprising 24 titles). The new test set, in turn, comprises seven

120
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Table 8.1: MediaEval 2014 VSD dataset summary. The dataset is divided into three
parts, namely a 24-title Hollywood Training set, a seven-title Hollywood Test set, and a
set with 86 clips from YouTube. For all samples, the competition provides annotations
that indicate the violent video segments, with starting and ending frame numbers.

Title violence (%) Title violence (%)

H
ol

ly
w

oo
d

T
ra

in
in

g

01. Armageddon 7.78
02. Billy Elliot 2.46

H
ol

ly
w

oo
d

T
es

t 01. 8 Mile 4.70
03. Dead Poets Society 0.58 02. Braveheart 21.45
04. Eragon 13.26 03. Desperado 31.94
05. Fight Club 15.83 04. Ghost in the Shell 9.85
06. Harry Potter V 5.44 05. Jumanji 6.75
07. I am Legend 15.64 06. Terminator II 24.89
08. Independence Day 13.13 07. V for Vendetta 14.27
09. Leon 16.36 Total — 13h53m 17.18
10. Midnight Express 7.12
11. Pirates of the Caribbean I 18.15
12. Reservoir Dogs 30.41
13. Saving Private Ryan 33.95
14. The Bourne Identity 7.18
15. The Sixth Sense 2.00
16. The Wickerman 6.44 YouTube — 2h03m — 86 clips 44.47
17. The Wizard of Oz 1.02
18. Fantastic Four I∗ 20.53
19. Fargo∗ 15.04
20. Forrest Gump∗ 8.29
21. Legally Blond∗ 0.00
22. Pulp Fiction∗ 25.05
23. The Godfather∗ 5.73
24. The Pianist∗ 15.44
Total — 50h02m 12.35

∗ 2013 test dataset

additional Hollywood titles, which must also be purchased, in the same manner as the
previous movies, due to copyright issues. In addition to these 31 titles, the MediaEval
2014 VSD dataset also comprises a second minor dataset, composed of 86 YouTube clips,
which may be from six seconds to six minutes long. In this particular case, these clips
are provided within the dataset for free, since they are licensed under Creative Commons
regulation.

The provided annotations, in turn, do not support shot segmentation anymore. With
the intent of challenging participants to perform violent content localization, the 2014
edition counts on frame-level annotations of all violent video segments, which are indi-
vidually identified by their starting and ending frame numbers. These annotations had
been carried out by several human assessors, in a hierarchical bottom-up revision man-
ner [80]. For the annotators, violent segments were the ones that a person would not let
an eight-year-old child watch, due to physical violence [80].

In Table 8.1.1, we summarize the content of the MediaEval 2014 VSD dataset, with
the percentages of violent segments per title. The values were collected by [80]. For the
sake of illustration, Figure 8.1 depicts some violent frames from the YouTube dataset.

8.1.2 Experimental Protocol and Metrics

As already mentioned, the VSD task motivation is the development of systems that may
help users choose suitable titles for their children, by retrieving the most violent movie
parts, for parental preview [33]. As a consequence, competitors’ solutions are compared
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1: Violent frames sampled from the MediaEval 2014 VSD dataset, concerning
the YouTube clips. In (c), (g), and (h), we have clips that were obtained from video
games. All images are licensed under Creative Commons regulation.

from the perspective of retrieval, with the support of the Mean Average Precision (MAP)
metric, which was properly explained in Section 5.1.2.

In the particular case of the 2014 edition, participants can provide any segmentation of
the target video stream (in terms of segment sizes and positions), for attributing labels and
confidence scores to each segment. As a consequence, competitors’ segments may coincide
only partially with the groudtruth segments, and the tested systems may also provide
various small segments that fit and hit an eventual larger one, from the groundtruth. For
dealing with these situations, MediaEval organizers propose a variation on the calculation
of the hits (and thus of the precision), on the occasion of measuring MAP. For the sake
of being fair, they only consider a segment prediction as a hit, if it overlaps with the
corresponding groundtruth segment by more than 50%. In addition, to deal with the
situation of evaluating many small segments, several hits on the same groundtruth segment
only count as one true positive. The other hits are just ignored, for not raising the value of
MAP inappropriately. For such variation of MAP calculation, they refer to as MAP2014.

Relying upon the MAP2014 metric, the MediaEval 2014 VSD task adopts a straight-
forward protocol. Participants must report results over the seven-title test dataset, which
must not be used in any system training step. Solutions must contain a proper segmenta-
tion of the target stream, and each segment must receive a label (violent or non-violent),
and a confidence classification score. The best solutions are the ones that report the high-
est values of MAP2014. For assessing the MAP2014, the MediaEval initiative provides a
Perl script for free, which we use in our experiments.

Finally, given the nature of our approach — in which we have two moments of data
learning, (i) one related to the snippet classification learning, and (ii) the other related
to the fusion meta-learning — we separate the seven movies that belong to the 2013 test
set1, and 26 clips from the YouTube set, for exclusively using in the fusion meta-learning
step.

1These seven movies are highlighted with asterisks (∗), in Table 8.1.1.
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8.1.3 Multimodal Snippet Classifiers

For evaluating violent content localization, we employ the exact same four snippet classi-
fiers that were used for pornography content localization. Therefore, we evaluate diverse
combinations of the following strategies:

• Two audio-based classifiers, namely MFCC (based upon MFCC [32] features), and
PROS (based upon prosodic features [40]).

• Two image-based classifiers, namely HOG (based upon a dense application of the
HOG descriptor [30]), and TRoF (based upon the proposed TRoF descriptor).

Each classifier is an expert in classifying five-second snippets, and returns confidence
classification scores in the real interval [0..1]. For more details about these classifiers,
please refer to Section 7.1.3.

8.1.4 Fusion Meta-Learning Solutions

For implementing the Fusion Meta-Learning task (please refer to Section 6.1), we em-
ploy the exact same three strategies that were used for pornography content localization.
Therefore, we explore the following solutions:

• Score Thresholding (THR), a representative of the overall idea of the winner-takes-
all.

• Naïve Bayes Classifier (NBC), a representative of generative strategies.

• Support Vector Machine (SVM), a representative of discriminative strategies.

For details concerning these solution, please refer to Section 7.1.4.
Finally, similar to the pornographic case, regardless of the used fusion meta-learning

method, in the test system operation, we always convolve a Gaussian window with stan-
dard deviation σ = 5s over the temporal sequence of obtained fusion scores, for smoothing.
Missing values within the score fusion vector — which are related to the ϵ value, in Fig-
ure 6.3 — are filled with a linear interpolation of the present values. Afterward, we assume
a fusion score threshold of t = 0.5, and we replace all the time-adjacent scores equal to,
or greater than t = 0.5, by their average value. Complementarily, all the time-adjacent
scores smaller than t = 0.5 are replaced by their own average value.

8.2 Results

In this section, we present the results of the proposed fusion pipeline, on the occasion of
combining the snippet classifiers that were enlisted in Section 8.1.3, in varied manners.
First, in Section 8.2.1, we present the individual results of the snippet classifiers, in face of
the problem of violence localization, without combinations. Thereafter, in Section 8.2.2,
we present the results of combining snippet classifiers that rely upon the same type of
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Table 8.2: Results of violence localization over the MediaEval 2014 VSD dataset, without
fusion of snippet classifiers. We report the MAP2014 official competition metric.

Solution MAP2014

N
o-

fu
si

on

au
di

o PROS 0.402
MFCC 0.288

im
ag

e HOG 0.299
TRoF 0.401

low-level feature (i.e., we provide the results of fusions of audio-based classifiers, and
of fusions of image-based classifiers, separately). Next, in Section 8.2.3, we present the
results of multimodal combinations, while in Section 8.2.4, we present some graphs that
depict the quality of the violence localization, over one selected title from the MediaEval
2014 VSD test set.

8.2.1 Single Solutions

In Table 8.2, we present the individual results of the snippet classifiers, without combi-
nations, in face of the problem of violent content localization. We report the MAP2014,
which is the official MediaEval VSD competition metric (see Section 8.1.2).

As one might observe, in the particular case of violence localization, and in opposition
to pornography localization (see Section 7.2.1), auditory and visual features are equally
suitable for the task, with the PROS-based alternative presenting the highest MAP2014,
indeed. That may be related to the high sound edition quality of the Hollywood movies,
which also follow a well-established grammar for affecting spectators. Moreover, we also
verify that motion is an important feature for violence detection. While in the porno-
graphic case, the HOG- and TRoF-based solutions are equivalently good, in the present
situation, the still-image HOG-based solution presents a much inferior result, when com-
pared to the space-temporal TRoF-based one.

In the following two sections, we verify how much effectiveness improvement a fusion
of features leads to, when compared to these single solutions. Particularly, in the next
section, we combine the auditory, and the visual features, according to their nature, for
having a better understanding on how these modalities contribute to the localization of
violent content. Later on, in Section 8.2.3, we take a step further, and combine features
of different modalities.

8.2.2 Fusion of Solutions with Similar Nature

In Table 8.3, we present the results of combining same-nature solutions (i.e., PROS with
MFCC, for being auditory, and HOG with TRoF, for being visual). Contrary to the cases
of pornography localization, in violence detection, the THR fusion of same-nature features
does not work quite well. It therefore leads to worse results of MAP2014, when compared
to any single solution (see Table 8.2). Notwithstanding, the NBC- and SVM-based fusions
of features lead to better results, specially in the NBC case.
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Table 8.3: Results of violence localization, with fusion of snippet classifiers that rely
upon features of the same nature (auditory or visual). We report the MAP2014 official
competition metric.

Solution MAP2014

T
H

R PROS + MFCC 0.374
HOG + TRoF 0.324

N
B

C PROS + MFCC 0.453
HOG + TRoF 0.473

SV
M PROS + MFCC 0.419

HOG + TRoF 0.406

MJV: majority voting — NBC: Naïve Bayes Classifier
— SVM: Support Vector Machine

For instance, in the case of auditory features (PROS and MFCC), the NBC fusion leads
to an improvement in MAP2014 of nearly 12%, when compared to the solely PROS-based
alternative, and of nearly 57%, when compared to the solely MFCC-based one. Similarly,
in the case of visual features (HOG and TRoF), the NBC fusion yields an improvement in
MAP2014 of around 58% and 18%, when compared to the solely HOG- and TRoF-based
solutions, respectively.

In the following section, we report the results of multimodal fusion, and verify whether
or not the auditory and visual features are complementary, for this particular problem.

8.2.3 Multimodal Fusion Solutions

In Table 8.4, we present the results of combining snippet classifiers that rely upon features
of different nature (e.g., auditory and visual, a.k.a., multimodal solutions). We explore the
combination of the best auditory feature, with the best visual one (PROS+TRoF), and
alternatively, we explore a complete fusion, with all the four available snippet classifiers
(referred to as ALL, therefore combining PROS, MFCC, HOG and TRoF).

In the case of combining all the features (ALL solutions), the fusions are not clearly
better than exclusively combining only auditory (PROS+MFCC), or only visual features
(HOG+TRoF solutions), with NBC or with SVM. It indicates that some auditory features
are mistakenly canceling the hits of the visual ones — and vice-versa — revealing an
absence of complementarity.

More important than that, though, is the fact that the multimodal combination of
PROS and TRoF (the former auditory, and the later visual) leads to the best solution,
thus far. The SVM-PROS+TRoF combination provides a MAP2014 of 0.502. It indicates
that the auditory PROS-based snippet classifier produces hits on the occasions in which
the visual TRoF-based one misses, and vice-versa. Hence, they are complementary, and
we are able to take benefits from that. In the following section, we provide a qualitative
analysis of the violence localization that is provided by such solution.
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Table 8.4: Results of violence localization over the MediaEval 2014 VSD dataset, with
multimodal fusion of snippet classifiers. We report the MAP2014 official competition
metric. In bold, we highlight the best result.

Solution MAP2014

T
H

R PROS + TRoF 0.460
ALL 0.406

N
B

C PROS + TRoF 0.488
ALL 0.476

SV
M PROS + TRoF 0.502

ALL 0.397

MJV: majority voting — NBC: Naïve Bayes Classifier
— SVM: Support Vector Machine

8.2.4 Qualitative Evaluation

For the sake of illustration, in this section, we present a qualitative evaluation of violence
localization, over ten minutes that were selected from the Jumanji movie title. The
localization is provided by the best multimodal solution (SVM-PROS+TRoF), which —
during the experiments — obtained the highest MAP2014 over the MediaEval 2014 VSD
test set.

Figure 8.2 depicts the ten-minute timeline, with groundtruth and system answer. Red
and white areas refer to the localization groundtruth: red regards violent scenes, while
white regards non-violent scenes. Black dots, in turn, represent mislocalization. In addi-
tion, segments of interest are properly identified by capital letters (from A to C ).

As one might observe, along the observed ten minutes of video footage, we have many
occurrences of false positives (which are related to the black dots that lie within the white
regions), and of false negatives (which are related to the black dots that lie inside the red
regions). Moreover, except for the first quarter of the footage at hand — which presents
arbitrary false positives — the mislocalizations are concentrated around the regions of
label transition (i.e., the instants when the scene changes from positive to negative, or
vice-versa.

In order to understand the eventual difficulties faced by the proposed solution over the
regions of transition, we focus on a particular sequence of the footage, which is related
to the segments A, B, and C, and the transitions among them. Figure 8.3 depicts some
frames that comprise such segments. In Figure 8.3 (a–d), we have the frames related to
segment A, which is non-violent, although such frames are mistakenly labeled as positive.
In Figure 8.3 (e–h), in turn, we have the frames related to segment B, which is violent,
and whose frames are correctly identified as such. Finally, in Figure 8.3 (i–l), we have the
frames related to segment C, which is non-violent, in spite of such frames being labeled
as positive.

As one might observe, the violent scene — which is correctly detected and is related
to Figure 8.3 (e–h) and to segment B — depicts a scene with panicked people, who are
being attacked by an alligator.

Prior to that, segment A — represented by Figure 8.3 (a–b) — depicts a scene with
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Figure 8.2: Localization quality over a ten-minute long footage that was sampled from
the Jumanji movie title. The localization was provided by the multimodal SVM-
PROS+TRoF solution. Red and white areas depict the localization groundtruth: red
for positive, and white for negative. Black dots represent the mislocalization.

(a) A1: non-violent (b) A2: non-violent (c) A3: non-violent (d) A4: non-violent

(e) B1: violent (f) B2: violent (g) B3: violent (h) B4: violent

(i) C1: non-violent (j) C2: non-violent (k) C3: non-violent (l) C4: non-violent

Figure 8.3: Frames sampled from the Jumanji movie title. In (a–d), we have a prior
sequence of false positive frames that were sampled from segment A, within Figure 8.2. In
(e–h), we have a middle sequence of true positive frames that were sampled from segment
B. In (i–l), we have a posterior sequence of false positive frames that were sampled from
segment C. All images are copyrighted, and therefore belong to Sony/Columbia.

the same studio setup of segment B. Although the groundtruth tells the opposite, the
action already regards a flooded room, with apprehensive players and motion on water.
The alligator, though, is not present yet. In such context, one might argue that the scene
is already tense, indeed indicating a difficult transition.

Posterior to the violent scene, the studio setup changes completely, becoming outdoor
(see Figure 8.3 (i–l), which regards segment C. However, we point out some elements that
may turn that transition also difficult to cope with. First, the players are clearly tense,
what might be captured by the prosody descriptor. Second, the police officer is holding
a gun — see Figure 8.3 (l) — which is an action that is present in many positive scenes
throughout the dataset, and the motion-aware TRoF descriptor might capture as well.

Although such example is a small one, considering the size of the MediaEval 2014 VSD
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Table 8.5: Best result of violence localization in contrast with the literature. All works
report the MAP2014 official competition metric.

Solution MAP2014

Dai et al. [29] 0.630
Zhang et al. [99] 0.566
Lam et al. [55] 0.564
SVM-PROS+TRoF (proposed) 0.502

dataset, it gives a hint about how difficult the localization task is. We therefore conclude
the qualitative experiments.

8.3 Final Remarks

Thanks to the MediaEval initiative, we can compare the proposed solutions with the
current state of the art of violence localization. In Table 8.5, we put the best mul-
timodal approach herein proposed in perspective with three works from the literature,
whose authors usually attend the MediaEval VSD task competition and that are worth
highlighting.

As one might observe, we report a modest and inferior value for the official competition
metric, although it is not so far from the mentioned publications. Nevertheless, in face of
such numbers, there are some considerations that we find important to take into account,
when analyzing such performances.

First and foremost, all three works make use of more than one combination of over
three content classifiers, that rely upon diverse auditory and visual features2. Within
those features, the use of time consuming space-temporal approaches is prime for obtain-
ing a high effectiveness, specially regarding the Dense Trajectories [93], which represent
the current state of the art of space-temporal video description for action recognition.
Dense Trajectories, however, are computationally expensive, and present a high-memory
footprint, as we have verified in Section 4.2.2. Additionally, the works of Lam et al. [55],
and of Dai et al. [29] also rely upon deep neural networks, for obtaining the reported
results. These solutions, therefore, will certainly not meet the restrictions of low-memory
footprint and processing time that strongly characterize the current use of mobile devices,
such as tablets and smartphones, at least under their current configurations (Southern
Hemisphere Winter, 2016).

The SVM-PROS+TRoF solution, on the contrary, relies upon the use of only two
classifiers, which individually present low-memory footprint and small processing time.
While TRoF was conceived aiming at efficient video description, prosody is an auditory
feature that presents the impressive characteristic of delivering only three values for each
low-level feature vector. To the best of our knowledge, no other low-level descriptor
presents such a low-memory footprint.

In this vein, with the correct configuration of snippet overlap — which is yet subject
2For more details regarding these works, please refer to Section 2.3, and to Table 2.3.
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to investigation, as we point out in Chapter 9 — the proposed solution is suitable for
deployment on mobile devices.

Finally, when solving the problem of violence localization, we perceived many differ-
ences with respect to the problem of pornography localization. Although we have used
the same high-level fusion pipeline for both situations, the explored setups led to dis-
tinct conclusions. For instance, audio is a negligible feature, in the particular case of
pornographic localization, at least, for the particular datasets considered in this work. In
the case of violence, though, it is paramount. Moreover, motion-aware and still-image
descriptors present close performance, when employed in pornographic setups. However,
that is not true for violence localization, whereby the TRoF-based solution significantly
outperformed the HOG-based one.

In any case, the fusion pipeline could be nicely adapted for each situation, while still
relying upon the classification and fusion of time-overlapping video snippets. That is
related to hypothesis H2 (please refer to Section 1.1), which states that it is possible
to localize sensitive content within the video timeline by means of the classification and
fusion of time-overlapping video snippets. In face of the presented and discussed results,
we found strong evidence that such hypothesis is true.



Chapter 9

Conclusions and Future Work

In this chapter, we conclude this work. For that, in Section 9.1, we present the conclusions
we have drawn, as a consequence of the conduction of the research, and of tackling the
problem of sensitive-video analysis, while in Section 9.2, we elaborate on possible future
work.

9.1 Conclusions

The analysis of sensitive video is a relevant task, due to the potential harm of sensitive
content. The present high pervasiveness and big-data nature of digital video demands the
use of automatic solutions, for performing such task. Notwithstanding, on the occasion
of annotating the Pornography-2k dataset, we could realize how difficult it is to detect
sensitive content, given the subjectivity and context dependency of the target concepts.
Such characteristic hinders the design of fully automatic and computer-aided solutions,
in face of the discrete and deterministic nature of computers. To make things worse, it
is sometimes necessary to perform the task swiftly, because of urgent situations, such as
saving violently injured people, or catching red-handed criminals.

From the gained experience, we could find that pornography detection is easier to
perform than violence detection. That is related to the different levels of subjectivity
that are inherent to each concept. Pornography is more explicit, as one might observe
through the adopted definition, from Short et al. [81]: “any explicit sexual matter with
the purpose of eliciting arousal”. The challenges of detecting it rely mainly upon the
necessity of reducing false positives, for instance in benign situations of nudity, such as
baby breastfeeding, breast exam, body anatomy classes, etc. Violence, on the contrary,
has a more subjective concept, which is borrowed from the MediaEval initiative [33, 80]:
situations “one would not let an eight-year old child see”. The challenges of performing
violence detection do not rest only on reducing false negatives, but also on improving the
number of true positives, given the variety of positive samples, which may range from
people fighting, to car crashes, to injuries, to felony, and to gun threatening. That is
indeed reflected throughout the results we have obtained, which are always better in the
pornographic cases. Of course, if we intend to refine the pornography detection case to
child pornography, the difficulty level is certainly increased and we envision that as a

130
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possible future work worth pursuing.
Moreover, regarding the particular case of content localization, we could verify impor-

tant differences between pornography and violence. For pornography localization, audio is
negligible, and space-temporal features perform as well as still-image features. As already
discussed, the audio aspect might be related to the abundance of pornographic amateur
content, whose audio streams have nothing to do with the visual content, due to poor
edition, compression, or stealth purposes. Concerning the space-temporal vs. still-image
features, the best approach actually regards a combined use of both, since they seem to
be very complementary, in the pornographic case. For violence localization, audio is a
differential for improving effectiveness, and space-temporal approaches strongly outper-
form still-image solutions. In this case, it is worth mention that the violent dataset is
mostly composed of Hollywood titles, which present professional special sound effects,
and controlled camera pace rates. The datasets for pornographic and for violent con-
tent localization are thus really distinct, not only in content, but also in film grammar
(studio vs. amateur).

In face of the proposed solutions, a natural question regards defining when one should
use them, and when one should not. In the particular case of sensitive-content classifi-
cation, the BoVW- and TRoF-based pipeline is indicated for generalization problems, in
which the system is expected to learn, from a training dataset, the characteristics that
better represent a class, or that better separate the elements from different classes. It
thus may be considered for quickly separating video footage in two-class scenarios, with
low-memory footprint requirements, as long as one have a properly annotated training
dataset at hand. Concerning inappropriate applications, we do not expect such pipeline
to be useful for solving specialization problems, in which one searches for an instance in
particular (e.g., detection of near duplicates, landmark recognition, person identification,
etc.), although we have not experimented with any of these problems.

With respect to the proposed high-level fusion pipeline, we find it useful for content
retrieval setups, in which one may want to take a look at the top k more relevant scenes of
a given stream, in order to decide if it is safe for disclosure, or for inclusion in a particular
category of interest. Again, the relevance of content must be related to a generalization
problem, instead of a specialization one. It might be used, for example, for localizing
frames with fallen people, but not for tracking a specific person along frames.

The problem of sensitive-video analysis is far from being solved, and we have system-
atically tackled only a portion of its facets: classification and localization of pornographic
and violent content. For doing so, however, we have found strong evidences that the
hypotheses of the present research are true:

• It is possible to efficiently use video temporal information for effective sensitive-
content classification, regarding low-memory footprint and small processing time, by
combining simplified space-temporal video interest-point detection and description,
with entire-footage representation through a single feature vector.

• It is possible to localize sensitive content within the video timeline by means of the
classification and fusion of time-overlapping video snippets.
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In practical terms, we designed solutions efficient enough for deployment on mobile
devices with limited hardware, such as tablets and smartphones. We indeed have delivered
two functional prototypes to Samsung Electronics (one for violence and pornography
classification, and the other for violence and pornography localization), as a part of a
major project that was coordinated by professor Anderson Rocha, and to which this
research was linked.

Finally, we may admit that we have reached the goal of designing and developing effec-
tive and efficient methods for sensitive-content classification and localization. Nonetheless,
there is yet room for further work, as we point out in the next section.

9.2 Future Work

In this section, we discuss some issues that we could not address in the present research,
due to limitations of time and scope, and that we leave as future work.

We have tackled the problem of sensitive-video analysis in two fronts: (i) as a decision
problem, which is related to the task of sensitive-video classification, and (ii) as a search
problem, which is related to the task of sensitive-content localization. In this vein, a
third front is to treat the problem as an optimization one, whereby somebody might want
to localize not any occurrence of sensitive content, within a target video stream, but
instead the occurrence of a particular one, which minimizes the cost, or maximizes the
gain of a problem-dependent objective function. That is useful, for instance, in Forensic
scenarios, in which one might want to track the behavior of a particular person, which
had been previously identified as a criminal. Or for movie industry purposes, whereby
an enthusiastic might want to see only the scenes from a target stream where a specific
actor or actress appears. Or for fine-grained video categorization, regarding, for instance,
only retrieving the titles that depict a particular landmark, etc. As we have already
mentioned, the solutions herein proposed are not directly appropriate for solving such
type of problems, revealing that some investigation is needed, in order to point out if
there is any manner to adequate them.

Still in the direction of sensitive-content classification and localization, we have ex-
plored pornographic and violent content. Nevertheless, the representatives of sensitive
content are untold, including, only to name a few, child abuse, elder abuse, child pornog-
raphy, cruelty to animals, humiliation, murder, etc. With only pornography and violence,
we were able to identify relevant differences, which directly impact on how the proposed
pipelines shall be instantiated for each concept. For instance, we have already mentioned
that audio is negligible for pornography, but not for violence, and so on, at least for the
datasets and cases considered in this work. Therefore, all the remaining sensitive con-
cepts are out there to be analyzed, for helping us draw even more interesting and striking
conclusions.

Concerning the design of efficient solutions, that are suitable for deployment on mobile
devices, we have considered only memory footprint and processing time, for reporting the
efficiency of the solutions. However, mobile devices have another feature that is equally
important, which is power consumption, since they depend upon batteries for operating.
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Hence, understanding how much battery each strategy saves, when running on mobile
devices, is an additional and interesting research direction, which demands knowledge
about mobile architectures, and device benchmarking.

Regarding TRoF, which is a new space-temporal interest point detector, and video
content descriptor, we have tested it only for sensitive-video analysis. Notwithstanding,
there is a vast literature of video description for action recognition, to which the proposed
detector and descriptor can also be put in perspective.

With respect to the proposed high-level fusion pipeline, there are some particular
issues the are left for investigation, and that may provide improvements on the reported
results:

• The combination of classifiers that are experts in detecting snippets with different
sizes, other than the five seconds herein explored.

• The establishment of the optimal snippet overlapping rate, when describing the
target video stream, considering the effectiveness vs. efficiency tradeoff.

• The use of other machine learning techniques in the fusion meta-learning step, such
as random forests, or SVMs with other kernels different than RBF.

Taking into consideration the current popularization and impressive results of deep
neural networks, it is worth considering putting them in perspective with the solutions
proposed herein, as well as investigating appropriate forms of combining them, and ex-
ploring their complementarity, if existent.

Finally, all the reported results reveal that there is still room for improvements, spe-
cially in the case of violence detection, which by itself reveals to be a problem far more
complex than one might foresee at first.
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Appendix A

Effects of PCA Dimensionality
Reduction upon TRoF-based
Pornography Classification

As pointed out by Sánchez et al. [79], PCA dimensionality reduction is key to make the
Fisher Vectors work as mid-level representation. Besides that, they report that clas-
sification accuracy does not seem to be overly sensitive to the exact number of PCA
components, if enough dimensions (namely 64 to 128, in the case of 128-D SIFT [61]
descriptions) are used.

In this vein, in this appendix, we verify if such behavior applies to the proposed
TRoF-based video pornography classifier.

To help us choose candidate amounts of dimensionality reduction for a proper anal-
ysis, we express in Figure A.1 the normalized cumulative variance that is associated to
each possible PCA dimensionality reduction — from one to 192 — over 192-D TRoF
descriptions that were obtained from a set of 50 pornographic and 50 non-pornographic
randomly chosen webvideos.

As one might observe, Figure A.1 depicts four options of PCA dimensionality reduction
that we judge as of interest. The first one (a) is a reduction to the 96 TRoF dimensions
that present highest variance (comprising 97% of the total TRoF data variance). This
is the option that we use in all the experiments of the thesis; it represents a reduction
of the low-level video description dimensionality by a factor of two, as recommended
in [93, 71]. The second one (b) is a reduction to the 48 most variant TRoF dimensions,
which comprise 90% of data variance. The third one (c), in turn, is a reduction to the 31
most variant dimensions (comprising 75% of variance), while the fourth (d) is a reduction
to 17 dimensions (which comprises 50% of variance).

Table A.1 contains the classification accuracy that is obtained with the use of each
chosen PCA dimensionality reduction within a TRoF-based pornography classifier. The
same data fold was used in each configuration. As one might observe, the results are
close to each other, suggesting that the findings of Sánchez et al. [79] are also applicable
to TRoF: accuracy does not seem to be overly responsive to the exact number of PCA
components, even if we maintain only 50% of description data variance (related to the
largest reduction to only 17 dimensions).
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Figure A.1: Normalized cumulative variance of each possible PCA dimensionanlity re-
duction of TRoF descriptions. In (a), we have a reduction to 96 dimensions, which is
the one that is employed in all the experiments of the thesis, and that comprises 97% of
TRoF data variance. In (b), we have a reduction to 48 dimensions, which comprises 90%
of TRoF data variance. In (c), we have a reduction to 31 dimensions, which comprises
75% of TRoF data variance. In (d), we have a reduction to 17 dimensions, which com-
prises 50% of TRoF data variance.

Table A.1: Normalized classification accuracy (ACC, cf. Equation 4.4) associated to each
chosen PCA dimensionality reduction. The values were collected over the same data fold.

dimensions (#) ACC (%)

(a) 96 92.5
(b) 48 91.6
(c) 31 92.1
(d) 17 92.3

Last but not least, the present findings reveal an interesting performance issue: we
can use smaller PCA-transformed TRoF descriptions within the proposed pipeline, if we
want. That will probably lead to a faster classifier, with little impact on the classification
accuracy. Nevertheless, in the main experiments of the thesis, we follow the literature
and keep reducing the dimensionality of all low-level descriptions by half.
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